1
|
Szlosek R, Marquardt C, Hegen O, Balázs G, Riesinger C, Timoshkin AY, Scheer M. Synthesis of bismuthanyl-substituted monomeric triel hydrides. Chem Sci 2024:d4sc03926b. [PMID: 39184294 PMCID: PMC11342148 DOI: 10.1039/d4sc03926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
The syntheses and characterizations of the first bismuthanylborane monomers stabilized only by a donor in D·BH2Bi(SiMe3)2 (D = DMAP 1a, IDipp 1b, IMe41c; DMAP = 4-dimethylaminopyridine, IDipp = 1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene, IMe4 = 1,3,4,5-tetramethylimidazol-2-ylidene) are presented. All compounds were synthesized by salt metathesis reactions between D·BH2I and KBi(SiMe3)2(THF)0.3 and represent some of the extremely rare compounds featuring a 2c-2e B-Bi bond in a molecular compound. The products display high sensitivity towards air and light and slowly decompose in solution even at -80 °C. By the reaction of IDipp·GaH2(SO3CF3) with KBi(SiMe3)2(THF)0.3, the synthesis of the first bismuthanylgallane IDipp·GaH2Bi(SiMe3)2 (2) stabilized only by a 2-electron donor was possible, as evident from single crystal X-ray structure determination, NMR spectroscopy and mass spectrometry. Computational studies shed light on the stability of the products and the electronic nature of the compounds.
Collapse
Affiliation(s)
- Robert Szlosek
- Institute of Inorganic Chemistry, University of Regensburg 93053 Regensburg Germany
| | - Christian Marquardt
- Institute of Inorganic Chemistry, University of Regensburg 93053 Regensburg Germany
| | - Oliver Hegen
- Institute of Inorganic Chemistry, University of Regensburg 93053 Regensburg Germany
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg 93053 Regensburg Germany
| | - Christoph Riesinger
- Institute of Inorganic Chemistry, University of Regensburg 93053 Regensburg Germany
| | - Alexey Y Timoshkin
- Institute of Chemistry, St. Petersburg State University Universitetskaya nab. 7/9 199034 St. Petersburg Russia
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg 93053 Regensburg Germany
| |
Collapse
|
2
|
Szlosek R, Niefanger AS, Balázs G, Seidl M, Timoshkin AY, Scheer M. Characterization of the Ligand Properties of Donor-stabilized Pnictogenyltrielanes. Chemistry 2024; 30:e202303603. [PMID: 38131435 DOI: 10.1002/chem.202303603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
A general synthesis and the characterization of novel alkyl-substituted NHC-stabilized pnictogenylboranes NHC ⋅ BH2 ER2 (NHC=N-heterocyclic carbene, E=P, As; R2 =Me2 , Ph2 , t BuH, Cy2 , (SiMe3 )2 ) are reported. These compounds were reacted with Ni(CO)4 to the corresponding complexes of the type [(NHC ⋅ BH2 ER2 )Ni(CO)3 ] to determine their donor strength by Tolman Electronic Parameters (TEPs) and their steric demand as ligands compared to classical phosphines, superbasic phosphines and other commonly applied donor systems. The results show that the NHC-stabilized pnictogenyltrielanes can be considered as being highly basic, while their steric influence depends strongly on the organic residues as well as the donor attached to the {BH2 } moiety. Although weaker than commonly used superbasic phosphines, the donor strength of pnictogenyltrielanes in general can be classified as of similar strength as NHCs. The steric and electronic properties can easily be modified by alkyl substitution as evident from the TEP trends.
Collapse
Affiliation(s)
- Robert Szlosek
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | | | - Gábor Balázs
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Michael Seidl
- Institute of General and Theoretical Chemistry, Leopold-Franzens Universität Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Alexey Y Timoshkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| | - Manfred Scheer
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
3
|
Gayen S, Shyamal S, Mohapatra S, Antharjanam PKS, Ghosh S. B-P Coupling: Metal Stabilized Phosphinoborate Complexes. Chemistry 2024; 30:e202302362. [PMID: 38009462 DOI: 10.1002/chem.202302362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/28/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
In an effort to establish B-P coupling reactions without the use of phosphine-borane dehydrocoupling agent, we have developed a new synthetic methodology employing group 8 metal σ-borate complex [{κ3 -H,S,S'-BH2 L2 }Ru{κ3 -H,H,S-BH3 L}] (L=NC5 H4 S), 1. Treatment of 1 with chlorodiphenyl phosphine (PPh2 Cl) yielded 1,5-P,S chelated Ru-dihydridoborate species [PPh2 H{κ3 -H,H,S-BH(OH)L}Ru{κ2 -P,S-(Ph2 P)BH2 L}], 2. The insertion of phosphine moiety (PPh2 ) by the cleavage of 3c-2e σ(Ru… H-B) bonding interaction led to the formation of B-P bond. The κ2 -P,S chelated six-membered ring adopted a boat conformation in complex 2. The heterocycle is made of all different atoms, which is one of the rarest examples of heteroatomic ring systems. Theoretical outcomes demonstrated the electronic insight of B-P coupling and stabilization through transition metal. In order to explore an alternate route of B-P bond formation, we have further explored the reaction of 1 and Ru-bis(dihydridoborate) complex, 5 with secondary phosphine oxide (SPO). Although, thermolysis of 1 with diphenylphosphine oxide yielded analogous σ-borate complex 3, the similar reaction of 5 at room temperature led to the formation of novel phosphinous(III) acid incorporated Ru(σ-borate)(dihydridoborate) complex, 6. In a similar fashion, the reaction of 5 with phosphite ligand generated Ru(σ-borate)(dihydridoborate) complex, 7, which is analogous to 6.
Collapse
Affiliation(s)
- Sourav Gayen
- Department of Chemistry, Indian Institution of Technology, Madras, Chennai, 600036, India
| | - Sampad Shyamal
- Department of Chemistry, Indian Institution of Technology, Madras, Chennai, 600036, India
| | - Stutee Mohapatra
- Department of Chemistry, Indian Institution of Technology, Madras, Chennai, 600036, India
| | | | - Sundargopal Ghosh
- Department of Chemistry, Indian Institution of Technology, Madras, Chennai, 600036, India
| |
Collapse
|
4
|
Braese J, Lehnfeld F, Annibale VT, Oswald T, Beckhaus R, Manners I, Scheer M. Titanium-Catalyzed Polymerization of a Lewis Base-Stabilized Phosphinoborane. Chemistry 2023; 29:e202301741. [PMID: 37498679 DOI: 10.1002/chem.202301741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
The reaction of the Lewis base-stabilized phosphinoborane monomer tBuHPBH2 NMe3 (2 a) with catalytic amounts of bis(η5 :η1 -adamantylidenepentafulvene)titanium (1) provides a convenient new route to the polyphosphinoborane [tBuPH-BH2 ]n (3 a). This method offers access to high molar mass materials under mild conditions and with short reaction times (20 °C, 1 h in toluene). It represents an unprecedented example of a transition metal-mediated polymerization of a Lewis base-stabilized Group 13/15 compound. Preliminary studies of the substrate scope and a potential mechanism are reported.
Collapse
Affiliation(s)
- Jens Braese
- Universität Regensburg, Institut für Anorganische Chemie, 94053, Regensburg, Germany
| | - Felix Lehnfeld
- Universität Regensburg, Institut für Anorganische Chemie, 94053, Regensburg, Germany
| | - Vincent T Annibale
- University of Victoria, Department of Chemistry, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Tim Oswald
- Carl von Ossietzky Universität Oldenburg, Institut für Chemie Carl-von-Ossietzky, Straße 9-11, 26129, Oldenburg, Germany
| | - Rüdiger Beckhaus
- Carl von Ossietzky Universität Oldenburg, Institut für Chemie Carl-von-Ossietzky, Straße 9-11, 26129, Oldenburg, Germany
| | - Ian Manners
- University of Victoria, Department of Chemistry, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Manfred Scheer
- Universität Regensburg, Institut für Anorganische Chemie, 94053, Regensburg, Germany
| |
Collapse
|
5
|
Szlosek R, Ackermann MT, Marquardt C, Seidl M, Timoshkin AY, Scheer M. Coordination of Pnictogenylboranes Towards Tl(I) Salts and a Tl- Mediated P-P Coupling. Chemistry 2023; 29:e202202911. [PMID: 36259382 PMCID: PMC10099240 DOI: 10.1002/chem.202202911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Indexed: 11/05/2022]
Abstract
The coordination chemistry of only Lewis-base (LB)-stabilized pnictogenylboranes EH2 BH2 ⋅NMe3 (E=P, As) towards Tl(I) salts has been studied. The reaction of Tl[BArCl ] (BArCl =[B(3,5-C6 H3 Cl2 )4 ]- ) with the corresponding pnictogenylborane results in the formation of [Tl(EH2 BH2 ⋅NMe3 )][BArCl ] (1 a: E=P; 1 b: E=As). Whereas the Tl ion in 1 a/b is monocoordinated, the exchange of the weakly coordinating anion (WCA) in the Tl(I) salt leads to the formation of a trigonal pyramidal coordination mode at the Tl atom by coordination of three equivalents of EH2 BH2 ⋅ NMe3 in [Tl(EH2 BH2 ⋅ NMe3 )3 ][WCA] (2 a: E=P, WCA=TEFCl ; 2 b: E=As, WCA=TEF) (TEF=[Al{OC(CF3 )3 }4 ]- , TEFCl =[Al{(OC(CF3 )2 (CCl3 )}4 ]- ). Furthermore, by using two equivalents of PH2 BH2 ⋅NMe3 , a Tl(I)-mediated P-P coupling takes place in CH2 Cl2 as solvent resulting in [Me3 N⋅BH2 PH2 PHBH2 ⋅NMe3 ][WCA] (WCA=TEF, 3 a; BArCl , 3 b; TEFCl , 3 c). In contrast, for the arsenic derivatives 1 b and 2 b, no coupling reaction is observed. The underlying chemical processes are elucidated by quantum chemical computations.
Collapse
Affiliation(s)
- Robert Szlosek
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Matthias T Ackermann
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Christian Marquardt
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Michael Seidl
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Alexey Y Timoshkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb., Sankt-Peterburg, 7/9, 199304 St. Petersburg, Russia
| | - Manfred Scheer
- Institut für Anorganische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
6
|
Lehnfeld F, Hegen O, Balazs G, Timoshkin A, Scheer M. Coordination chemistry of pnictogenylboranes towards group 6 transition metal Lewis acids. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Manfred Scheer
- University of Regensburg Inorganic Chemistry Universitätsstrasse 31 D-93040 Regensburg GERMANY
| |
Collapse
|
7
|
Elsayed Moussa M, Kahoun T, Ackermann MT, Seidl M, Bodensteiner M, Timoshkin AY, Scheer M. Coordination Chemistry of Anionic Pnictogenylborane Compounds. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mehdi Elsayed Moussa
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Tobias Kahoun
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Matthias T. Ackermann
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michael Seidl
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michael Bodensteiner
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Alexey Y. Timoshkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034 St. Petersburg, Russia
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|