1
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Le T Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yana D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Denis O Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Kim HK, Song CH, Bae YS, Im SY, Lee HK. Glutamine Prevents Late-Phase Anaphylaxis via MAPK Phosphatase 1-Dependent Cytosolic Phospholipase A 2 Deactivation. Int Arch Allergy Immunol 2016; 171:61-70. [DOI: 10.1159/000452103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/28/2016] [Indexed: 11/19/2022] Open
|
3
|
Lee CH, Kim HK, Kim JM, Ayush O, Im SY, Oh DK, Lee HK. Glutamine suppresses airway neutrophilia by blocking cytosolic phospholipase A(2) via an induction of MAPK phosphatase-1. THE JOURNAL OF IMMUNOLOGY 2012; 189:5139-46. [PMID: 23109722 DOI: 10.4049/jimmunol.1201599] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophils are inflammatory cells that may contribute in a crucial way to the pathophysiology of steroid-resistant severe asthma. We previously reported that the nonessential amino acid l-glutamine (Gln) suppressed the recruitment of neutrophils into the airway in a murine model of asthma. In this study, we investigated the mechanisms by which Gln exerts beneficial effects in airway neutrophilia. We used the model we previously developed, which is suitable for examining sequential early asthmatic events, including neutrophil infiltration. Gln suppressed airway neutrophilia in a CXC chemokine-independent way. Airway neutrophilia was associated with cytosolic phospholipase A(2) (cPLA(2)) and 5-lipoxygenase (5-LO) activities. p38 MAPK, the upstream pathway of cPLA(2) and 5-LO, played a key role in inducing airway neutrophilia. Gln inhibited not only the phosphorylation of cPLA(2) and p38 MAPK but also leukotriene B(4) levels in the airways. Gln induced the early induction of MAPK phosphatase-1 (MKP-1) protein, a negative regulator of p38. MKP-1 small interfering RNA abrogated all the effects of Gln. Our results suggest that pathways involving p38/cPLA(2)/5-LO have a major role in airway neutrophilia. Gln suppresses airway neutrophilia via inhibiting p38 MAPK and its downstream pathways in an MKP-1-dependent way, which may provide a novel therapeutic strategy for pulmonary neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Chang-Hoon Lee
- Department of Immunology, Chonbuk National University Medical School, Jeonju, Chonbuk 561-182, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
4
|
Smoum R, Rubinstein A, Dembitsky VM, Srebnik M. Boron containing compounds as protease inhibitors. Chem Rev 2012; 112:4156-220. [PMID: 22519511 DOI: 10.1021/cr608202m] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Reem Smoum
- The School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel.
| | | | | | | |
Collapse
|
5
|
Cabezas DM, Madoery R, Diehl BWK, Tomás MC. Emulsifying Properties of Different Modified Sunflower Lecithins. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1915-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
|
7
|
Fonseca RG, Ferreira TL, Ward RJ. Refolding and purification of the human secreted group IID phospholipase A2 expressed as inclusion bodies in Escherichia coli. Protein Expr Purif 2009; 67:82-7. [DOI: 10.1016/j.pep.2009.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/03/2009] [Accepted: 04/09/2009] [Indexed: 11/29/2022]
|
8
|
Birts CN, Barton CH, Wilton DC. A Catalytically Independent Physiological Function for Human Acute Phase Protein Group IIA Phospholipase A2. J Biol Chem 2008; 283:5034-45. [DOI: 10.1074/jbc.m708844200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
9
|
He Q, Li J. Hydrolysis characterization of phospholipid monolayers catalyzed by different phospholipases at the air-water interface. Adv Colloid Interface Sci 2007; 131:91-8. [PMID: 17210114 DOI: 10.1016/j.cis.2006.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 11/11/2006] [Indexed: 11/22/2022]
Abstract
Combination of some newly developed microscopic and spectroscopic techniques with conventional Langmuir monolayer method can provide more quantitative information with the molecular orientation and reorganization process of spread amphiphilic molecules at the air/water interface. These techniques are extended to investigate the hydrolysis process of spreading lipid monolayer catalyzed by different enzymes, phospholipases A2, C and D, respectively. Synchrotron X-ray diffraction and infrared reflection absorption spectroscopy are able directly to give the structural information of the assembled monolayer, interfacial activity of amphiphiles and their components at the interface. Microscopic technique such as Brewster angle microscopy (BAM), fluorescence microscopy (FM) can be used to trace the morphological changes dynamically as the spreading lipid monolayer is hydrolyzed at the air/water interface. We summary here some latest progress in this filed and give a brief review over the hydrolysis features of phospholipid monolayer catalyzed by different enzymes. It is attempted to establish a model of membrane hydrolysis process in order to better understand the mechanism of membrane metabolism and signal transduction in a living system.
Collapse
Affiliation(s)
- Qiang He
- Beijing National Laboratory for Molecular Sciences, International Joint Lab CAS Key Lab of Colloid and Interface Science, Institute of Chemistry, Chinese Academy of Sciences, Zhong Guan Cun, Beijing, PR China
| | | |
Collapse
|
10
|
Murelli RP, Cheung AK, Snapper ML. Conformationally Restricted (+)-Cacospongionolide B Analogues. Influence on Secretory Phospholipase A2 Inhibition. J Org Chem 2006; 72:1545-52. [PMID: 17315974 DOI: 10.1021/jo061407a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new approach to (+)-cacospongionolide was developed to access conformationally restricted variants of the natural product. The flexible aliphatic region between the decalin and side chain portion of the natural product was replaced with alkenyl and alkynyl linkers to probe the influence of structural rigidity in the inhibition of secretary phospholipase A2 (sPLA2). It was found that when the aliphatic section is replaced with a Z-olefin or an alkyne, sPLA2 inhibitory activity suffered relative to the natural product; however, an E-olefin-containing analogue led to an enhanced activity. These results suggest that preferred sPLA2 binding conformation of the natural product is similar to the geometry of the E-olefin-containing analogue.
Collapse
Affiliation(s)
- Ryan P Murelli
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|