1
|
Maria TC, Maldaner Pereira PA, Pepe ESG, Lemos EGDM. Biochemical study and digestion profile of olive oil by LipBK: Revealing the potential applications of a new acid/broad thermal range true lipase. Int J Biol Macromol 2025; 297:139892. [PMID: 39818365 DOI: 10.1016/j.ijbiomac.2025.139892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
This study characterized a novel bacterial lipase with high biotechnological potential, focusing on industrial and environmental applications. Bacterial isolates were screened using olive oil as a substrate, and the strain with the highest hydrolytic halo was identified as Burkholderia sp. via 16S rRNA analysis. The secreted lipase was purified and exhibited high hydrolytic activity, specifically targeting long-chain fatty acids. Gas chromatography analyses confirmed its ability to hydrolyze fatty acids present in olive oil, while kinetic parameters and substrate preferences were assessed using synthetic substrates. Optimal activity was observed at pH 4.5 and temperatures between 40 and 60 °C. The enzyme demonstrated remarkable thermal stability, retaining over 78 % residual activity after 24 h at 30, 40, 60, and even 70 °C. It also displayed broad pH stability, with increased relative activity at pH 6.5 over time. LipBK showed resilience in the presence of metallic ions, salts, EDTA, and non-ionic detergents, with enhanced activity in the presence of additives like KCl, CaCl₂, and Triton X-100. These properties highlight its robustness and suitability for applications in acidic and thermally variable environments, such as biodiesel production, waste treatment, and sustainable industrial processes, contributing to global sustainability goals.
Collapse
Affiliation(s)
- Tainá Carolini Maria
- Postgraduate Program in Agricultural Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Pâmela A Maldaner Pereira
- Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Department of Clinical and Veterinary Surgery, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Elisângela Soares Gomes Pepe
- Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Institute of Bioenergy Research (IPBEN), Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
2
|
Ahsan A, Wagner D, Varaljay VA, Roman V, Kelley-Loughnane N, Reuel NF. Screening putative polyester polyurethane degrading enzymes with semi-automated cell-free expression and nitrophenyl probes. Synth Biol (Oxf) 2024; 9:ysae005. [PMID: 38414826 PMCID: PMC10898825 DOI: 10.1093/synbio/ysae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/26/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
Cell-free expression (CFE) has shown recent utility in prototyping enzymes for discovery efforts. In this work, CFE is demonstrated as an effective tool to screen putative polyester polyurethane degrading enzyme sequences sourced from metagenomic analysis of biofilms prospected on aircraft and vehicles. An automated fluid handler with a controlled temperature block is used to assemble the numerous 30 µL CFE reactions to provide more consistent results over human assembly. In sum, 13 putative hydrolase enzymes from the biofilm organisms as well as a previously verified, polyester-degrading cutinase were expressed using in-house E. coli extract and minimal linear templates. The enzymes were then tested for esterase activity directly in extract using nitrophenyl conjugated substrates, showing highest sensitivity to shorter substrates (4-nitrophenyl hexanoate and 4-nNitrophenyl valerate). This screen identified 10 enzymes with statistically significant activities against these substrates; however, all were lower in measured relative activity, on a CFE volume basis, to the established cutinase control. This approach portends the use of CFE and reporter probes to rapidly prototype, screen and design for synthetic polymer degrading enzymes from environmental consortia. Graphical Abstract.
Collapse
Affiliation(s)
- Afrin Ahsan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Dominique Wagner
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
- UES Inc., Dayton, OH, USA
| | - Vanessa A Varaljay
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Victor Roman
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Nigel F Reuel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| |
Collapse
|
3
|
Characterisation of an exo-(α-1,3)-3,6-anhydro-d-galactosidase produced by the marine bacterium Zobellia galactanivorans Dsij T: Insight into enzyme preference for natural carrageenan oligosaccharides and kinetic characterisation on a novel chromogenic substrate. Int J Biol Macromol 2020; 163:1471-1479. [PMID: 32763401 DOI: 10.1016/j.ijbiomac.2020.07.298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/12/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
Flavobacteriia are important degraders in the marine carbon cycle, due to their ability to efficiently degrade complex algal polysaccharides. A novel exo-(α-1,3)-3,6-anhydro-D-galactosidase activity was recently discovered from a marine Flavobacteriia (Zobellia galactanivorans DsijT) on red algal carrageenan oligosaccharides. The enzyme activity is encoded by a gene found in the first described carrageenan-specific polysaccharide utilization locus (CarPUL) that codes for a family 129 glycoside hydrolase (GH129). The GH129 family is a CAZy family that is strictly partitioned into two niche-based clades: clade 1 contains human host bacterial enzymes and clade 2 contains marine bacterial enzymes. Clade 2 includes the GH129 exo-(α-1,3)-3,6-anhydro-D-galactosidase from Z. galactanivorans (ZgGH129). Despite the discovery of the unique activity for ZgGH129, finer details on the natural substrate specificity for this enzyme are lacking. Examination of enzyme activity on natural carrageenan oligomers using mass spectrometry demonstrated that ZgGH129 hydrolyses terminal 3,6-anhydro-D-galactose from unsulfated non-reducing end neo-β-carrabiose motifs. Due to the lack of chromogenic substrates to examine exo-(α-1,3)-3,6-anhydro-D-galactosidase activity, a novel substrate was synthesised to facilitate the first kinetic characterisation of an exo-(α-1,3)-3,6-anhydro-D-galactosidase, allowing determination of pH and temperature optimums and Michaelis-Menten steady state kinetic data.
Collapse
|
4
|
Stefan A, Dal Piaz F, Girella A, Hochkoeppler A. Substrate Activation of the Low-Molecular Weight Protein Tyrosine Phosphatase from Mycobacterium tuberculosis. Biochemistry 2020; 59:1137-1148. [PMID: 32142609 PMCID: PMC7997110 DOI: 10.1021/acs.biochem.0c00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Mycobacterium tuberculosis is known to express
a low-molecular weight protein tyrosine phosphatase. This enzyme,
denoted as MptpA (Mycobacterium protein tyrosine
phosphatase A), is essential for the pathogen to escape the host immune
system and therefore represents a target for the search of antituberculosis
drugs. MptpA was shown to undergo a conformational transition during
catalysis, leading to the closure of the active site, which is by
this means poised to the chemical step of dephosphorylation. Here
we show that MptpA is subjected to substrate activation, triggered
by p-nitrophenyl phosphate or by phosphotyrosine.
Moreover, we show that the enzyme is also activated by phosphoserine,
with serine being ineffective in enhancing MptpA activity. In addition,
we performed assays under pre-steady-state conditions, and we show
here that substrate activation is kinetically coupled to the closure
of the active site. Surprisingly, when phosphotyrosine was used as
a substrate, MptpA did not obey Michealis–Menten kinetics,
but we observed a sigmoidal dependence of the reaction velocity on
substrate concentration, suggesting the presence of an allosteric
activating site in MptpA. This site could represent a promising target
for the screening of MptpA inhibitors exerting their action independently
of the binding to the enzyme active site.
Collapse
Affiliation(s)
- Alessandra Stefan
- Department of Pharmacy and Biotechnology, University of Bologna, 40136 Bologna, Italy
- CSGI, University of Firenze, 50019 Sesto Fiorentino, Firenze, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, University of Salerno, 84084 Fisciano, Salerno, Italy
| | - Antonio Girella
- Department of Pharmacy and Biotechnology, University of Bologna, 40136 Bologna, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, 40136 Bologna, Italy
- CSGI, University of Firenze, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
5
|
Chen CC, Gao GJ, Kao AL, Tsai CT, Tsai ZC. Two novel lipases purified from rice bran displaying lipolytic and esterification activities. Int J Biol Macromol 2019; 139:298-306. [DOI: 10.1016/j.ijbiomac.2019.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/01/2022]
|
6
|
Istvan P, Souza AA, Garay AV, Dos Santos DFK, de Oliveira GM, Santana RH, Lopes FAC, de Freitas SM, Barbosa JARG, Krüger RH. Structural and functional characterization of a novel lipolytic enzyme from a Brazilian Cerrado soil metagenomic library. Biotechnol Lett 2018; 40:1395-1406. [PMID: 30062528 DOI: 10.1007/s10529-018-2598-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/25/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To isolate putative lipase enzymes by screening a Cerrado soil metagenomic library with novel features. RESULTS Of 6720 clones evaluated, Clone W (10,000 bp) presented lipolytic activity and four predicted coding sequences, one of them LipW. Characterization of a predicted esterase/lipase, LipW, showed 28% sequence identity with an arylesterase from Pseudomonas fluorescens (pdb|3HEA) from protein database (PDB). Phylogenetic analysis showed LipW clustered with family V lipases; however, LipW was clustered in different subclade belonged to family V, suggesting a different subgroup of family V. In addition, LipW presented a difference in family V GH motif, a glycine replaced by a serine in GH motif. Estimated molecular weight and stokes radius values of LipW were 29,338.67-29,411.98 Da and 2.58-2.83 nm, respectively. Optimal enzyme activity was observed at pH 9.0-9.5 and at 40 °C. Circular dichroism analysis estimated secondary structures percentages as approximately 45% α-helix and 15% β-sheet, consistent with the 3D structure predicted by homology. CONCLUSION Our results demonstrate the isolation of novel family V lipolytic enzyme with biotechnological applications from a metagenomic library.
Collapse
Affiliation(s)
- Paula Istvan
- Laboratório de Enzimologia, Departamento de Biologia Celular, Instituto Central de Ciências Sul, Universidade de Brasília - UnB, Brasília, DF, 700910-900, Brazil
| | - Amanda Araújo Souza
- Laboratório de Biofísica, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Aisel Valle Garay
- Laboratório de Biofísica, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Debora Farage Knupp Dos Santos
- Laboratório de Enzimologia, Departamento de Biologia Celular, Instituto Central de Ciências Sul, Universidade de Brasília - UnB, Brasília, DF, 700910-900, Brazil
| | - Gideane Mendes de Oliveira
- Laboratório de Biofísica, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Fabyano Alvares Cardoso Lopes
- Laboratório de Enzimologia, Departamento de Biologia Celular, Instituto Central de Ciências Sul, Universidade de Brasília - UnB, Brasília, DF, 700910-900, Brazil
| | - Sonia Maria de Freitas
- Laboratório de Biofísica, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Ricardo Henrique Krüger
- Laboratório de Enzimologia, Departamento de Biologia Celular, Instituto Central de Ciências Sul, Universidade de Brasília - UnB, Brasília, DF, 700910-900, Brazil.
| |
Collapse
|
7
|
A novel, versatile family IV carboxylesterase exhibits high stability and activity in a broad pH spectrum. Biotechnol Lett 2017; 39:577-587. [DOI: 10.1007/s10529-016-2282-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
|
8
|
4-Hydroxy-N-propyl-1,8-naphthalimide esters: New fluorescence-based assay for analysing lipase and esterase activity. Biochimie 2016; 128-129:127-32. [PMID: 27478942 DOI: 10.1016/j.biochi.2016.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/27/2016] [Indexed: 11/21/2022]
Abstract
Research using 1,8-naphthalimide derivatives has expanded rapidly in recent years owing to their cell-permeable nature, ability to target certain cellular locations and fluorescent properties. Here we describe the synthesis of three new esters of 4-hydroxy-N-propyl-1,8-naphthalimide (NAP) and the development of a simple and sensitive assay protocol to measure the activity of carboxylester hydrolases. The NAP fluorophore was esterified with short (butyrate), medium (octanoate) and long (palmitate) chain fatty acids. The esters were spectroscopically characterised and their properties investigated for their suitability as assay substrates. The esters were found to be relatively stable under the conditions of the assay and levels of spontaneous hydrolysis were negligible. Non-specific hydrolysis by proteins such as bovine serum albumin was also minimal. A simple and rapid assay methodology was developed and used to analyse a range of commercially available enzymes that included enzymes defined as lipases, esterases and phospholipases. Clear differences were observed between the enzyme classes with respect to the hydrolysis of the various chain length esters, with lipases preferentially hydrolysing the medium chain ester, whereas esterases reacted more favourably with the short ester. The assay was found to be highly sensitive with the fluorophore detectable to the low nM range. These esters provide alternate substrates from established coumarin-based fluorophores, possessing distinctly different excitation (447 nm) and emission (555 nm) optima. Absorbing at 440-450 nm also offers the flexibility of analysis by UV-visible spectrophotometry. This represents the first instance of a naphthalimide-derived compound being used to analyse these enzymes.
Collapse
|
9
|
Maester TC, Pereira MR, Machado Sierra EG, Balan A, de Macedo Lemos EG. Characterization of EST3: a metagenome-derived esterase with suitable properties for biotechnological applications. Appl Microbiol Biotechnol 2016; 100:5815-27. [DOI: 10.1007/s00253-016-7385-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
10
|
Investigation of Lipozyme TL IM-catalyzed transesterification using ultraviolet spectrophotometric assay. CHINESE JOURNAL OF CATALYSIS 2014. [DOI: 10.1016/s1872-2067(14)60053-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Makena A, van Berkel SS, Lejeune C, Owens RJ, Verma A, Salimraj R, Spencer J, Brem J, Schofield CJ. Chromophore-Linked Substrate (CLS405): Probing Metallo-β-Lactamase Activity and Inhibition. ChemMedChem 2013; 8:1923-9. [DOI: 10.1002/cmdc.201300350] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Indexed: 12/12/2022]
|