1
|
Wang Y, Cao X, Shi J, Li X, Liu Y, Xu YJ. Tracking the dynamics of epoxy triglycerides during thermal oxidation by liquid chromatography-mass spectrometry. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Chen J, Zhang L, Sagymbek A, Li Q, Gao Y, Yu X. Formation of oxidation products in polar compounds of different vegetable oils during French fries deep‐frying. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jia Chen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| | - Lingyan Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| | - Altayuly Sagymbek
- Department of Food Science Saken Seifullin Kazakh Agrotechnical University 62 Zhenis Avenue, Nur‐Sultan 010011, R Kazakhstan
| | - Qi Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| | - Yuan Gao
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province College of Food Science and Engineering Northwest A&F University, 22 Xinong Road Yangling Shaanxi P. R. China
| |
Collapse
|
3
|
Li X, Nian BB, Tan CP, Liu YF, Xu YJ. Deep-frying oil induces cytotoxicity, inflammation and apoptosis on intestinal epithelial cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3160-3168. [PMID: 34786719 DOI: 10.1002/jsfa.11659] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 10/05/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Deep-frying oil has been found to cause inflammatory bowel disease (IBD). However, the molecular mechanism of the effect of deep-frying palm oil on IBD still remains undetermined. RESULTS In the present study, bioinformatics and cell biology were used to investigate the functions and signal pathway enrichments of differentially expressed genes. The bioinformatics analysis of three original microarray datasets (GSE73661, GSE75214 and GSE126124) in the NCBI-Gene Expression Omnibus database showed 17 down-regulated genes (logFC < 0) and 2 up-regulated genes (logFC > 0) existed in the enteritis tissue. Meanwhile, pathway enrichment and protein-protein interaction network analysis suggested that IBD is relevant to cytotoxicity, inflammation and apoptosis. Furthermore, Caco-2 cells were treated with the main oxidation products of deep-frying oil-total polar compounds (TPC) and its components (polymerized triglyceride, oxidized triglycerides and triglyceride degradation products) isolated from deep-frying oil. The flow cytometry experiment revealed that TPC and its components could induce apoptosis, especially for oxidized triglyceride. A quantitative polymerase chain reaction analysis demonstrated that TPC and its component could induce Caco-2 cell apoptosis through AQP8/CXCL1/TNIP3/IL-1. CONCLUSION The present study provides fundamental knowledge for understanding the effects of deep-frying oils on the cytotoxic and inflammatory of Caco-2 cells, in addition to clarifying the molecular function mechanism of deep-frying oil in IBD. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Bin-Bin Nian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Seri Kembangan, Malaysia
| | - Yuan-Fa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Cao X, Li X, Shu N, Tan CP, Xu YJ, Liu Y. The Characteristics and Analysis of Polar Compounds in Deep-Frying Oil: a Mini Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Fedko M, Kmiecik D, Siger A, Majcher M. The Stability of Refined Rapeseed Oil Fortified by Cold-Pressed and Essential Black Cumin Oils under a Heating Treatment. Molecules 2022; 27:2461. [PMID: 35458659 PMCID: PMC9028282 DOI: 10.3390/molecules27082461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Polar compounds and polymers are regarded as the most reliable indicators of oil degradation during heating, and it is desirable to find methods to reduce these undesirable changes. The aim of this study was (1) to determine the effect of enrichment with black cumin cold-pressed oil (CP) or essential oil obtained from black cumin cold-pressed oil in an equivalent amount (ES) on limiting the polar compounds and polymers content in blends based on refined rapeseed oil during high-temperature heating in a thin layer; (2) to determine tocochromanol losses and their effect on the change content of the polar compounds and polymers. Four fortified oils were made from refined rapeseed oil and one of the four additives (10% CP, 20% CP, 0.1% ES, and 0.2% ES). All fortified oils and refined rapeseed oil as a control sample were heated at 170 and 200 °C on the pan in a thin layer and evaluated regarding loss of individual tocochromanol homologs by HPLC-FL, polar compounds content, oxidized triacylglycerols (TAG), and polymers content by HPSEC-ELSD. Additionally, the fatty acid profile in nonheated oil was investigated. Tocochromanol analysis showed loss in all the samples. At 170 °C polymers were not detected; no difference was noted for polar compounds and oxidized TAG content; only the 20% CP sample showed a higher level. At 200 °C the 10% CP sample exhibited a significant protective effect with the lowest content of polar compounds, oxidized TAG, and dimers.
Collapse
Affiliation(s)
- Monika Fedko
- Department of Gastronomy Science and Functional Food, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-634 Poznan, Poland
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (D.K.); (M.M.)
| | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-634 Poznan, Poland;
| | - Małgorzata Majcher
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (D.K.); (M.M.)
| |
Collapse
|
6
|
Effect of phenolic extracts from Camellia oleifera seed cake on the formation of polar compounds, core aldehydes, and monoepoxy oleic acids during deep-fat frying. Food Chem 2022; 372:131143. [PMID: 34601419 DOI: 10.1016/j.foodchem.2021.131143] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/13/2021] [Accepted: 09/14/2021] [Indexed: 01/22/2023]
Abstract
The frying process is an excellent way to obtain food with desirable sensory. However, some harmful substances, such as aldehydes and monoepoxy oleic acids, could also be produced. This study mainly explores the inhibition of polyphenols from the Camellia oleifera seed cake extract (CSCE) on the formation of polar compounds, core aldehydes, and monoepoxy oleic acids during deep-fat frying. The results showed that the CSCE could significantly decrease peroxide, p-anisidine, total polar, and monoepoxy oleic acids compared with other groups. In addition, the CSCE could significantly inhibit the generation of oxidized triacylglycerol polymer (TGP) and oxidized triacylglycerol (ox-TG), indicating its anti-polymerization activity. The total amount of core aldehydes and glycerol ester core aldehydes (9-oxo) in soybean oil was significantly reduced. Furthermore, CSCE had a better inhibitory effect on monoepoxy fatty acids than TBHQ. Our results might be helpful to provide a basis for the search for new natural antioxidants.
Collapse
|
7
|
Li X, Liu Y, Nian B, Cao X, Liu Y, Xu Y. Influence of polar compounds distribution in deep‐frying oil on lipid digestion behaviour. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xue Li
- State Key Laboratory of Food Science and Technology School of Food Science and Technology National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Yan‐jun Liu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Bin‐bin Nian
- State Key Laboratory of Food Science and Technology School of Food Science and Technology National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Xin‐yu Cao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Yuan‐fa Liu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Yong‐jiang Xu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| |
Collapse
|
8
|
Li X, Liu YJ, Nian BB, Cao XY, Tan CP, Liu YF, Xu YJ. Molecular dynamics revealed the effect of epoxy group on triglyceride digestion. Food Chem 2021; 373:131285. [PMID: 34740049 DOI: 10.1016/j.foodchem.2021.131285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
The digestion behavior of epoxy triglyceride, the main cytotoxic product of deep-frying oil, remains unknown, which may affect its biosafety. In this study, epoxy triglyceride (EGT) and triglyceride (GT) were used to reveal the effect of epoxy group on digestion. Digestibility rate analysis showed that the free fatty acids release rate of EGT was slower. To clarify this phenomenon, binding ability with salt ions in digestive juice and particle size were also been studied. Cluster size analysis indicated that epoxy group increased triglyceride particle size, resulting in smaller contact area between EGT and lipase. Interface behaviors displayed EGT decreased binding ability with salt ions in digestive juice. Spectroscopic analysis showed EGT caused the red shift of lipase peak, indicating that epoxy group changed lipase structure. Molecular dynamics simulation suggested EGT leads to loosen lipase structure. In conclusion, this study highlights that epoxy group could weaken the triglyceride digestion.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yan-Jun Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Bin-Bin Nian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xin-Yu Cao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Selangor 410500, Malaysia
| | - Yuan-Fa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Yuan L, Xu Z, Tan CP, Liu Y, Xu YJ. Biohazard and dynamic features of different polar compounds in vegetable oil during thermal oxidation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Chen J, Zhang L, Li Q, Wang M, Dong Y, Yu X. Comparative study on the evolution of polar compound composition of four common vegetable oils during different oxidation processes. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Kinetics of forming polar compounds in frying oils under frying practice of fast food restaurants. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Li X, Wu G, Yang F, Meng L, Huang J, Zhang H, Jin Q, Wang X. Influence of fried food and oil type on the distribution of polar compounds in discarded oil during restaurant deep frying. Food Chem 2019; 272:12-17. [DOI: 10.1016/j.foodchem.2018.08.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
|
13
|
Liu Y, Cheng Y, Li J, Wang Y, Liu Y. Epoxy Stearic Acid, an Oxidative Product Derived from Oleic Acid, Induces Cytotoxicity, Oxidative Stress, and Apoptosis in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5237-5246. [PMID: 29730927 DOI: 10.1021/acs.jafc.8b01954] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present study, effects of cis-9,10-epoxy stearic acid (ESA) generated by the thermal oxidation of oleic acid on HepG2 cells, including cytotoxicity, apoptosis, and oxidative stress, were investigated. Our results revealed that ESA decreased the cell viability and induced cell death. Cell cycle analysis with propidium iodide staining showed that ESA induced cell cycle arrest at the G0/G1 phase in HepG2 cells. Cell apoptosis analysis with annexin V and propidium iodide staining demonstrated that ESA induced HepG2 cell apoptotic events in a dose- and time-dependent manner; the apoptosis of cells after treated with 500 μM ESA for 12, 24, and 48 h was 32.16, 38.70, and 65.80%, respectively. Furthermore, ESA treatment to HepG2 cells resulted in an increase in reactive oxygen species and malondialdehyde (from 0.84 ± 0.02 to 8.90 ± 0.50 nmol/mg of protein) levels and a reduction in antioxidant enzyme activity, including superoxide dismutase (from 1.34 ± 0.27 to 0.10 ± 0.007 units/mg of protein), catalase (from 100.04 ± 5.05 to 20.09 ± 3.00 units/mg of protein), and glutathione peroxidase (from 120.44 ± 7.62 to 35.84 ± 5.99 milliunits/mg of protein). These findings provide critical information on the effects of ESA on HepG2 cells, particularly cytotoxicity and oxidative stress, which is important for the evaluation of the biosafety of the oxidative product of oleic acid.
Collapse
Affiliation(s)
- Ying Liu
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Yajun Cheng
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Jinwei Li
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Yuanpeng Wang
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Yuanfa Liu
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
14
|
Application of triacylglycerol polymer determination in the quality evaluation of vegetable oil. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Li J, Li X, Cai W, Liu Y. Comparison of different polar compounds-induced cytotoxicity in human hepatocellular carcinoma HepG2 cells. Lipids Health Dis 2016; 15:30. [PMID: 26879050 PMCID: PMC4754997 DOI: 10.1186/s12944-016-0201-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/09/2016] [Indexed: 11/23/2022] Open
Abstract
Total polar compounds (TPC) formed during successive frying have the negative healthy effects. However, little researches focused on the cytotoxicity of different parts of TPC. The present study was carried out to elucidate the different polar compounds-induced apoptosis in human hepatocellular carcinoma (HCC) HepG2 cells. The polar compounds of frying oil named oxidized triglycerides oligo (TGO), oxidized triglycerides dimer (TGD), and oxidize triglycerides (ox-TG) were isolated and collected via HPLC. MTT assay was selected to determine the cell viability, and apoptosis rate of the cells was analyzed with the help of flow cytometry. The results indicated that TGO, TGD, or ox-TG could suppress the proliferation of HepG2 cells and improve the cell apoptosis in the concentration- and time- dependent manner. Different polar compounds have the different activity of cytotoxicity and apoptosis (p < 0.05), and ox-TG was the most serious deleterious on HepG2 cell viability and apoptotic, followed by TGO and TGD. At the concentration of 2.00 mg/ml and incubated for 48 h, the cell inhibition rate and apoptotic rate of HepG2 induced by ox-TG could reach 23.0 % and 16.05 %, respectively. Cell cycle analysis showed that the inhibition of TGO, TGD, and ox-TG on HepG2 cells mainly occurred in S phase.
Collapse
Affiliation(s)
- Jinwei Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Xiaodan Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Wenci Cai
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P.R. China. .,School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu Province, China.
| |
Collapse
|
16
|
Gertz C, Aladedunye F, Matthäus B. Oxidation and structural decomposition of fats and oils at elevated temperatures. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Felix Aladedunye
- Working Group for Lipid Research, Department for Safety and Quality of Cereals, Federal Research Institute for Nutrition and Food; Max Rubner-Institut (MRI); Detmold Germany
| | - Bertrand Matthäus
- Working Group for Lipid Research, Department for Safety and Quality of Cereals, Federal Research Institute for Nutrition and Food; Max Rubner-Institut (MRI); Detmold Germany
| |
Collapse
|