1
|
Starinets A, Ponomarenko A, Tyrtyshnaia A, Manzhulo I. Synaptamide modulates glial and neurotransmitter activity in the spinal cord during neuropathic pain. J Chem Neuroanat 2023; 134:102361. [PMID: 37935251 DOI: 10.1016/j.jchemneu.2023.102361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
N-docosahexaenoylethanolamine, or synaptamide, is an endogenous metabolite of docosahexaenoic acid that is known for synaptogenic and neurogenic effects. In our previous studies we have shown that synaptamide attenuates neuropathic pain, facilitates remyelination, and reduces neuroinflammation after the chronic constriction injury (CCI) of the sciatic nerve in rats. In the current study, we show that daily synaptamide administration (4 mg/kg/day) within 14 days post-surgery: (1) decreases micro- and astroglia activity in the dorsal and ventral horns of the lumbar spinal cord; (2) modulates pro-inflammatory (IL1β, IL6) and anti-inflammatory (IL4, IL10) cytokine level in the serum and spinal cord; (3) leads to a rise in synaptamide and anandamide concentration in the spinal cord; (4) enhances IL10, CD206 and N-acylethanolamine-hydrolyzing acid amidase synthesis in macrophage cell culture following LPS-induced inflammation. Thus, the ability of synaptamide to modulate glial and cytokine activity indicates its potential for implementation in the treatment peripheral nerve injury.
Collapse
Affiliation(s)
- Anna Starinets
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Arina Ponomarenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Anna Tyrtyshnaia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| |
Collapse
|
2
|
Egoraeva A, Tyrtyshnaia A, Ponomarenko A, Ivashkevich D, Sultanov R, Manzhulo I. Anti-inflammatory Effect of Polyunsaturated Fatty Acid N-Acylethanolamines Mediated by Macrophage Activity In Vitro and In Vivo. Inflammation 2023; 46:2306-2319. [PMID: 37490220 DOI: 10.1007/s10753-023-01879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
In recent years, there has been increasing interest in studying the anti-inflammatory activity of polyunsaturated fatty acid ethanolamides (N-acylethanolamines, NAE), which are highly active lipid mediators. The results of this study demonstrate that a dietary supplement (DS) of fatty acid-derived NAEs reduces LPS-induced inflammation. The processes of cell proliferation, as well as the dynamics of Iba-1-, CD68-, and CD163-positive macrophage activity within the thymus and spleen were studied. The production of pro-inflammatory cytokines (TNF, IL1β, IL6, and INFγ), ROS, NO, and nitrites was evaluated in the blood serum, thymus, and LPS-stimulated RAW264.7 mouse macrophages. In vitro and in vivo experiments have shown that DS (1) prevents LPS-induced changes in the morphological structure of the thymus and spleen; (2) levels out changes in cell proliferation; (3) inhibits the activity of Iba-1 and CD68-positive cells; (4) reduces the production of pro-inflammatory cytokines (TNF, IL1β, IL6, and INFγ), ROS, and CD68; and (5) enhances the activity of CD-163-positive cells. In general, the results of this study demonstrate the complex effect of DS on inflammatory processes in the central and peripheral immune systems.
Collapse
Affiliation(s)
- Anastasia Egoraeva
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| | - Anna Tyrtyshnaia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| | - Arina Ponomarenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| | - Darya Ivashkevich
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| | - Ruslan Sultanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia.
| |
Collapse
|
3
|
Starinets A, Tyrtyshnaia A, Manzhulo I. Anti-Inflammatory Activity of Synaptamide in the Peripheral Nervous System in a Model of Sciatic Nerve Injury. Int J Mol Sci 2023; 24:6273. [PMID: 37047247 PMCID: PMC10093792 DOI: 10.3390/ijms24076273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
N-docosahexaenoylethanolamine (DHEA), or synaptamide, is an endogenous metabolite of docosahexaenoic acid (DHA) that exhibits synaptogenic and neurogenic effects. In our previous studies, synaptamide administration inhibited the neuropathic pain-like behavior and reduced inflammation in the central nervous system following sciatic nerve injury. In the present study, we examine the effect of synaptamide on the peripheral nervous system in a neuropathic pain condition. The dynamics of ionized calcium-binding adapter molecule 1 (iba-1), CD68, CD163, myelin basic protein, and the production of interleukin 1β and 6 within the sciatic nerve, as well as the neuro-glial index and the activity of iba-1, CD163, glial fibrillary acidic protein (GFAP), neuronal NO synthase (nNOS), substance P (SP), activating transcription factor 3 (ATF3) in the dorsal root ganglia (DRG), are studied. According to our results, synaptamide treatment (4 mg/kg/day) (1) decreases the weight-bearing deficit after nerve trauma; (2) enhances the remyelination process in the sciatic nerve; (3) shows anti-inflammatory properties in the peripheral nervous system; (4) decreases the neuro-glial index and GFAP immunoreactivity in the DRG; (5) inhibits nNOS- and SP-ergic activity in the DRG, which might contribute to neuropathic pain attenuation. In general, the current study demonstrates the complex effect of synaptamide on nerve injury, which indicates its high potential for neuropathic pain management.
Collapse
Affiliation(s)
| | | | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.S.); (A.T.)
| |
Collapse
|
4
|
Khotimchenko YS, Silachev DN, Katanaev VL. Marine Natural Products from the Russian Pacific as Sources of Drugs for Neurodegenerative Diseases. Mar Drugs 2022; 20:708. [PMID: 36421986 PMCID: PMC9697637 DOI: 10.3390/md20110708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 09/05/2023] Open
Abstract
Neurodegenerative diseases are growing to become one of humanity's biggest health problems, given the number of individuals affected by them. They cause enough mortalities and severe economic impact to rival cancers and infections. With the current diversity of pathophysiological mechanisms involved in neurodegenerative diseases, on the one hand, and scarcity of efficient prevention and treatment strategies, on the other, all possible sources for novel drug discovery must be employed. Marine pharmacology represents a relatively uncharted territory to seek promising compounds, despite the enormous chemodiversity it offers. The current work discusses one vast marine region-the Northwestern or Russian Pacific-as the treasure chest for marine-based drug discovery targeting neurodegenerative diseases. We overview the natural products of neurological properties already discovered from its waters and survey the existing molecular and cellular targets for pharmacological modulation of the disease. We further provide a general assessment of the drug discovery potential of the Russian Pacific in case of its systematic development to tackle neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuri S. Khotimchenko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- A.V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
| | - Denis N. Silachev
- Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Vladimir L. Katanaev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
5
|
Fatty Acid-Derived N-acylethanolamines Dietary Supplementation Attenuates Neuroinflammation and Cognitive Impairment in LPS Murine Model. Nutrients 2022; 14:nu14183879. [PMID: 36145255 PMCID: PMC9504857 DOI: 10.3390/nu14183879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation plays a critical role in the pathogenesis of most neurological and neurodegenerative diseases and therefore represents a potential therapeutic target. In this regard, accelerating the resolution process in chronic neuroinflammation may be an effective strategy to deal with the cognitive consequences of neuropathology and generalized inflammatory processes. N-acylethanolamine (NAE) derivatives of fatty acids, being highly active lipid mediators, possess pro-resolving activity in inflammatory processes and are promising agents for the suppression of neuroinflammation and its consequences. This paper is devoted to a study of the effects played by dietary supplement (DS), containing a composition of fatty acid-derived NAEs, obtained from squid Berryteuthis magister, on the hippocampal neuroinflammatory and memory processes. By detecting the production of pro-inflammatory cytokines and glial markers, a pronounced anti-inflammatory activity of DS was demonstrated both in vitro and in vivo. DS administration reversed the LPS-induced reduction in hippocampal neurogenesis and memory deterioration. LC-MS analysis revealed an increase in the production of a range of NAEs with well-documented anti-inflammatory activity in response to the administered lipid composition. To conclude, we found that tested DS suppresses the neuroinflammatory response by reducing glial activation, positively regulates neural progenitor proliferation, and attenuates hippocampal-dependent memory impairment.
Collapse
|
6
|
Synaptamide Modulates Astroglial Activity in Mild Traumatic Brain Injury. Mar Drugs 2022; 20:md20080538. [PMID: 36005540 PMCID: PMC9410022 DOI: 10.3390/md20080538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
At present, the study of the neurotropic activity of polyunsaturated fatty acid ethanolamides (N-acylethanolamines) is becoming increasingly important. N-docosahexaenoylethanolamine (synaptamide, DHEA) is a highly active metabolite of docosahexaenoic acid (DHA) with neuroprotective, synaptogenic, neuritogenic, and anti-inflammatory properties in the nervous system. Synaptamide tested in the present study was obtained using a chemical modification of DHA isolated from squid Berryteuthis magister liver. The results of this study demonstrate the effects of synaptamide on the astroglial response to injury in the acute (1 day) and chronic (7 days) phases of mild traumatic brain injury (mTBI) development. HPLC-MS study revealed several times increase of synaptamide concentration in the cerebral cortex and serum of experimental animals after subcutaneous administration (10 mg/kg/day). Using immunohistochemistry, it was shown that synaptamide regulates the activation of GFAP- and S100β-positive astroglia, reduce nNOS-positive immunostaining, and stimulates the secretion of neurotrophin BDNF. Dynamics of superoxide dismutase production in synaptamide treatment confirm the antioxidant efficacy of the test compound. We found a decrease in TBI biomarkers such as GFAP, S100β, and IL-6 in the blood serum of synaptamide-treated experimental animals using Western blot analysis. The results indicate the high therapeutic potential of synaptamide in reducing the severity of the brain damage consequences.
Collapse
|
7
|
Modulation of Hippocampal Astroglial Activity by Synaptamide in Rats with Neuropathic Pain. Brain Sci 2021; 11:brainsci11121561. [PMID: 34942863 PMCID: PMC8699312 DOI: 10.3390/brainsci11121561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
The present study demonstrates that synaptamide (N-docosahexaenoylethanolamine), an endogenous metabolite of docosahexaenoic acid, when administered subcutaneously (4 mg/kg/day, 14 days), exhibits analgesic activity and promotes cognitive recovery in the rat sciatic nerve chronic constriction injury (CCI) model. We analyzed the dynamics of GFAP-positive astroglia and S100β-positive astroglia activity, the expression of nerve growth factor (NGF), and two subunits of the NMDA receptor (NMDAR1 and NMDAR2A) in the hippocampi of the experimental animals. Hippocampal neurogenesis was evaluated by immunohistochemical detection of DCX. Analysis of N-acylethanolamines in plasma and in the brain was performed using the liquid chromatography-mass spectrometry technique. In vitro and in vivo experiments show that synaptamide (1) reduces cold allodynia, (2) improves working memory and locomotor activity, (3) stabilizes neurogenesis and astroglial activity, (4) enhances the expression of NGF and NMDAR1, (5) increases the concentration of Ca2+ in astrocytes, and (6) increases the production of N-acylethanolamines. The results of the present study demonstrate that synaptamide affects the activity of hippocampal astroglia, resulting in faster recovery after CCI.
Collapse
|
8
|
Synaptamide Improves Cognitive Functions and Neuronal Plasticity in Neuropathic Pain. Int J Mol Sci 2021; 22:ijms222312779. [PMID: 34884587 PMCID: PMC8657620 DOI: 10.3390/ijms222312779] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
Neuropathic pain arises from damage or dysfunction of the peripheral or central nervous system and manifests itself in a wide variety of sensory symptoms and cognitive disorders. Many studies demonstrate the role of neuropathic pain-induced neuroinflammation in behavioral disorders. For effective neuropathic pain treatment, an integrative approach is required, which simultaneously affects several links of pathogenesis. One promising candidate for this role is synaptamide (N-docosahexaenoylethanolamine), which is an endogenous metabolite of docosahexaenoic acid. In this study, we investigated the activity of synaptamide on mice behavior and hippocampal plasticity in neuropathic pain induced by spared nerve injury (SNI). We found a beneficial effect of synaptamide on the thermal allodynia and mechanical hyperalgesia dynamics. Synaptamide prevented working and long-term memory impairment. These results are probably based on the supportive effect of synaptamide on SNI-impaired hippocampal plasticity. Nerve ligation caused microglia activation predominantly in the contralateral hippocampus, while synaptamide inhibited this effect. The treatment reversed dendritic tree degeneration, dendritic spines density reduction on CA1-pyramidal neurons, neurogenesis deterioration, and hippocampal long-term potentiation (LTP) impairment. In addition, synaptamide inhibits changes in the glutamatergic receptor expression. Thus, synaptamide has a beneficial effect on hippocampal functioning, including synaptic plasticity and hippocampus-dependent cognitive processes in neuropathic pain.
Collapse
|
9
|
Tyrtyshnaia A, Konovalova S, Bondar A, Ermolenko E, Sultanov R, Manzhulo I. Anti-Inflammatory Activity of N-Docosahexaenoylethanolamine and N-Eicosapentaenoylethanolamine in a Mouse Model of Lipopolysaccharide-Induced Neuroinflammation. Int J Mol Sci 2021; 22:ijms221910728. [PMID: 34639071 PMCID: PMC8509568 DOI: 10.3390/ijms221910728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
The search for methods of cognitive impairment treatment and prevention in neurological and neurodegenerative diseases is an urgent task of modern neurobiology. It is now known that various diseases, accompanied by dementia, exhibit a pronounced neuroinflammation. Considering the significant docosahexaenoic and eicosapentaenoic polyunsaturated fatty acids' therapeutic potential, we decided to investigate and compare anti-inflammatory activity of their N-acylethanolamine derivatives. As a result, we found that both N-docosahexaenoylethanolamine (synaptamide) and N-eicosapentaenoylethanolamine (EPEA) prevents an LPS-mediated increase in the proinflammatory cytokines TNF-α and IL-6 production in the SIM-A9 microglia culture. In an in vivo experiment, synaptamide reversed an increase in LPS-mediated hippocampal TNF-α and IL-1β, but EPEA did not. However, both compounds contributed to the microglia polarization towards the M2-phenotype. Synaptamide, rather than EPEA, inhibited the Iba-1-positive microglia staining area increase. However, both synaptamide and EPEA prevented the LPS-mediated astrogliosis. A study of BDNF immunoreactivity showed that synaptamide, but not EPEA, reversed an LPS-mediated decrease in BDNF production. Despite the more pronounced anti-inflammatory activity of synaptamide, both compounds were effective in maintaining a normal level of hippocampal long-term potentiation in neuroinflammation. The results indicate a high therapeutic potential for both compounds. However, some tests have shown higher activity of synaptamide compared to EPEA.
Collapse
|
10
|
Starinets A, Tyrtyshnaia A, Kipryushina Y, Manzhulo I. Analgesic activity of synaptamide in a rat sciatic nerve chronic constriction injury model. Cells Tissues Organs 2021; 211:73-84. [PMID: 34510045 DOI: 10.1159/000519376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Anna Starinets
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Anna Tyrtyshnaia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Yulia Kipryushina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| |
Collapse
|
11
|
Sultanov R, Ermolenko E, Poleschuk T, Denisenko Y, Kasyanov S. Action of alkyl glycerol ethers and n-3 polyunsaturated fatty acids diet on hematological parameters of blood and liver plasmalogen level in aged rats. J Food Sci 2021; 86:2727-2735. [PMID: 34002853 DOI: 10.1111/1750-3841.15756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
One of the ways to reduce age-related changes can be a diet correction by adding biologically active substances. We studied the effect of a diet including alkyl glycerol ethers (AGs) and n-3 polyunsaturated fatty acid (PUFA) concentrate isolated from the hepatopancreas of Berrytheuthis magister squid on hematological parameters and plasmalogens level in the liver of elderly rats. The senile animals showed decrease in hemoglobin, a three-fold decrease in leukocytes, a three-fold increase in platelet count, and a double decrease of blood coagulation time in the peripheral blood. Age-related changes in rats were characterized by the development of anemia, hypercoagulation, and a decrease in the number of immunocompetent cells. AGs, both separately and in combination with n-3 PUFAs, induced an increase in the number of red blood cells and hemoglobin, a decrease in the number of platelets, and an immunostimulating activity. Under the action of AGs and n-3 PUFAs, the concentration of plasmalogens and docosahexaenoic acid in the rat liver increased 2- and 1.5 folds, respectively. PRACTICAL APPLICATION: This study showed that the combined use of AGs and n-3 PUFAs improves the rheological properties of the blood and the state of the immune system during aging. The enrichment of diet with dietary supplements, whose structure contains AGs and n-3 PUFAs can increase the content of plasmalogens in the body.
Collapse
Affiliation(s)
- Ruslan Sultanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 17 Palchevskogo Str., Vladivostok, Russia
| | - Ekaterina Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 17 Palchevskogo Str., Vladivostok, Russia
| | - Tatiana Poleschuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 17 Palchevskogo Str., Vladivostok, Russia.,Pacific State Medical University, 2 Ostryakova Ave., Vladivostok, Russia
| | - Yulia Denisenko
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Sergey Kasyanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 17 Palchevskogo Str., Vladivostok, Russia
| |
Collapse
|
12
|
Magallanes LM, Tarditto LV, Grosso NR, Pramparo MC, Gayol MF. Highly concentrated omega-3 fatty acid ethyl esters by urea complexation and molecular distillation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:877-884. [PMID: 30009420 DOI: 10.1002/jsfa.9258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Raya liver deodorized oil contains high concentrations of eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). The present study investigated the processes of urea complexation (UC) and molecular distillation (MD) to determine the most adequate operation conditions for each process, separately and together, aiming to obtain highly concentrated EPA, DPA and DHA ethyl esters with chemical indicator values permitted by the current legislation for edible oils. RESULTS In the second stage of MD, a concentration of 820.27 g kg-1 in the distillate and 951.06 g kg-1 of omega-3 fatty acid ethyl esters in the residue was obtained. The distillate showed values of free fatty acids, peroxide and p-anisidine lower than the maximum allowed for edible oils in accordance with the current legislation. CONCLUSION The use of UC and MD together has revealed a significant improvement in the total concentration of omega-3 fatty acid ethyl esters in the final product and good application prospects. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leisa M Magallanes
- Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Lorena V Tarditto
- Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Nelson R Grosso
- Química Biológica, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Pramparo
- Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - María F Gayol
- Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| |
Collapse
|
13
|
Manzhulo O, Tyrtyshnaia A, Kipryushina Y, Dyuizen I, Manzhulo I. Docosahexaenoic acid induces changes in microglia/macrophage polarization after spinal cord injury in rats. Acta Histochem 2018; 120:741-747. [PMID: 30170694 DOI: 10.1016/j.acthis.2018.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 02/05/2023]
Abstract
Docosahexaenoic acid (DHA, 22:6 (n-3)) leads to recovery of locomotor functions observed of spinal cord injury (SCI) in rats. In present study, we characterized the expression of iba-1, CD86, CD163 in microglia/macrophages, to assess activation state and M1 (pro-inflammatory)/M2 (anti-inflammatory) phenotypes respectively, in the rostral, central and caudal segment of the spinal cord on 7 and 35 days after SCI. We found that DHA treatment leads to: (1) an increased activation and proliferation of microglial cells; (2) an alteration in the dynamics between M1 and M2 microglia/macrophages phenotypes (3) and increased production of an antioxidant enzymes. Overall, our data demonstrates that DHA has a complex effect in post-traumatic process within the central nervous system, and supports the therapeutic potential of DHA-based drugs.
Collapse
Affiliation(s)
- Olga Manzhulo
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Anna Tyrtyshnaia
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia; School of Biomedicine, Far Eastern Federal University, Vladivostok, 690950, Russia
| | - Yulia Kipryushina
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Inessa Dyuizen
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Igor Manzhulo
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia; School of Biomedicine, Far Eastern Federal University, Vladivostok, 690950, Russia.
| |
Collapse
|
14
|
Haq M, Park SK, Kim MJ, Cho YJ, Chun BS. Modifications of Atlantic salmon by-product oil for obtaining different ω-3 polyunsaturated fatty acids concentrates: An approach to comparative analysis. J Food Drug Anal 2018; 26:545-556. [PMID: 29567223 PMCID: PMC9322207 DOI: 10.1016/j.jfda.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) rich 2-monoacylglycerols (2-MAG), omega-3 polyunsaturated free fatty acids (ω-3 PUFFAs) concentrate, and PUFA enriched acylglycerols were prepared from salmon frame bone oil (SFBO) by enzymatic alcoholysis, urea complexation, and enzymatic esterification, respectively. The yields of 2-MAG, ω-3 PUFFAs concentrate, and PUFA enriched acylglycerols were 40.25, 16.52, and 15.65%, respectively. ω-3 PUFFAs concentrate and PUFA enriched acylglycerols showed darker red color than SFBO and 2-MAG due to aggregation of astaxanthin pigment in ω-3 PUFFAs concentrate during urea complexation. The viscosity and specific gravity of SFBO and PUFA enriched acylglycerols showed similar values whereas 2-MAG and ω-3 PUFFAs showed significantly (p < 0.05) lower values. Stability parameters like acid value, peroxide value, free fatty acid value, and p-anisidine value of SFBO and ω-3 PUFAs concentrates were within acceptable limits except extreme high acid value and free fatty acid value of ω-3 PUFFAs concentrate. Thermogravimetric analysis showed similar and higher thermal stability of SFBO and PUFA enriched acylglycerols than 2-MAG and ω-3 PUFFAs concentrate. The ω-3 PUFAs content in 2-MAG, ω-3 PUFFAs concentrate, and PUFA enriched acylglycerols was increased to 20.81, 52.96, and 51.74% respectively from 13.54% in SFBO. ω-3 PUFFAs concentrate and PUFA enriched acylglycerols showed higher DPPH and ABTS radical scavenging activity than SFBO and 2-MAG. The results obtained from this study suggest the production of PUFA enriched acylglycerols rich in ω-3 PUFAs supplements from fish oil for human and pet animals.
Collapse
|
15
|
Vázquez JA, Noriega D, Ramos P, Valcarcel J, Novoa-Carballal R, Pastrana L, Reis RL, Pérez-Martín RI. Optimization of high purity chitin and chitosan production from Illex argentinus pens by a combination of enzymatic and chemical processes. Carbohydr Polym 2017; 174:262-272. [PMID: 28821067 DOI: 10.1016/j.carbpol.2017.06.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
Abstract
The present report illustrates the optimisation of the experimental conditions for the chemical and enzymatic production of chitin and chitosan from Illex argentinus pen by-products. Optima conditions for chitin isolation were established at 0.82M NaOH/36.4°C, 57.5°C/pH=9.29, 59.6°C/pH=9.30 and 49.6°C/pH=5.91 for chemical, alcalase, esperase and neutrase deproteinization, respectively. Chitin samples were subsequently deacetylated by alkaline treatment reaching the highest degrees of deacetylation (DD>93%) at 61.0-63.7% of NaOH and 14.9-16.4h of hydrolysis depending on the type of process previously performed to the squid pens. Molecular weight (as number average molecular weight, Mn) of chitosan produced in the experimental designs ranged from 143kDa (PDI 2.37) to 339kDa (PDI 2.38).
Collapse
Affiliation(s)
- José Antonio Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC), r/Eduardo Cabello, 6. Vigo, 36208 Galicia, Spain.
| | - Diana Noriega
- Departamento de Química Analítica y Alimentaria, Facultade de Ciencias de Ourense, Universidade de Vigo, Campus As Lagoas s/n, Ourense, Spain; Grupo de Bioquímica de Alimentos, Instituto de Investigacións Mariñas (IIM-CSIC), r/Eduardo Cabello, 6. Vigo, 36208 Galicia, Spain
| | - Patricia Ramos
- Grupo de Bioquímica de Alimentos, Instituto de Investigacións Mariñas (IIM-CSIC), r/Eduardo Cabello, 6. Vigo, 36208 Galicia, Spain
| | - Jesus Valcarcel
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC), r/Eduardo Cabello, 6. Vigo, 36208 Galicia, Spain; Grupo de Bioquímica de Alimentos, Instituto de Investigacións Mariñas (IIM-CSIC), r/Eduardo Cabello, 6. Vigo, 36208 Galicia, Spain
| | - Ramon Novoa-Carballal
- 3B́s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga s/n, 4715 Braga, Portugal
| | - Rui L Reis
- 3B́s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ricardo I Pérez-Martín
- Grupo de Bioquímica de Alimentos, Instituto de Investigacións Mariñas (IIM-CSIC), r/Eduardo Cabello, 6. Vigo, 36208 Galicia, Spain
| |
Collapse
|
16
|
Ermolenko E, Latyshev N, Sultanov R, Kasyanov S. Technological approach of 1-O-alkyl-sn-glycerols separation from Berryteuthis magister squid liver oil. Journal of Food Science and Technology 2015; 53:1722-6. [PMID: 27570298 DOI: 10.1007/s13197-015-2148-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Biological active compounds, 1-O-alkyl-sn-glycerols (AG), were isolated from liver oil of the squid Berryteuthis magister. The main components of the initial lipids were 1-O-alkyl-2,3-diacyl-sn-glycerols (38.50 %) and triacylglycerols (24.26 %). The first step of separation was the alkaline hydrolysis of oil to form a lipid mixture consisting of AG, free fatty acids and cholesterol. AG were separated by double recrystallization from acetone at -20 °C and 1 °C. A simple procedure is proposed for obtaining AG with a purity of 99.22 %, the main component of which is chimyl alcohol (94.39 %). Purity and structure of the obtained products were confirmed by GC and GC-MS technique. Isolated AG may be used in nutrition and cosmetics.
Collapse
Affiliation(s)
- Ekaterina Ermolenko
- A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 690041 17 Palchevskogo St., Vladivostok, Russia
| | - Nikolay Latyshev
- A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 690041 17 Palchevskogo St., Vladivostok, Russia
| | - Ruslan Sultanov
- A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 690041 17 Palchevskogo St., Vladivostok, Russia
| | - Sergey Kasyanov
- A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 690041 17 Palchevskogo St., Vladivostok, Russia ; Far Eastern Federal University (FEFU), 690950 8 Suhanova St., Vladivostok, Russia
| |
Collapse
|
17
|
Manzhulo IV, Ogurtsova OS, Lamash NE, Latyshev NA, Kasyanov SP, Dyuizen IV. Analgetic effect of docosahexaenoic acid is mediated by modulating the microglia activity in the dorsal root ganglia in a rat model of neuropathic pain. Acta Histochem 2015; 117:659-66. [PMID: 26182833 DOI: 10.1016/j.acthis.2015.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 12/13/2022]
Abstract
The analgetic activity of docosahexaenoic acid (DHA, 22:6 n-3) was studied using a chronic constriction injury (CCI) model in rats, and the dynamics of iba-1 (+) microglia/macrophages in the dorsal root ganglia (DRG) were characterized. DHA reduced the intensity and duration of neurogenic pain. The application of DHA led to an earlier stabilization of weight bearing in the incapacitance test and prevented the development of cold allodynia and degenerative changes in tissues of the denervated limb. DHA treatment significantly reduced satellite glia reaction and expression of the pro-apoptotic p53 protein in the DRG. Thus, DHA's anti-pain effect may be a result of the modulation of microglia/macrophages activity and the development of neuroprotective effects at the level of the dorsal root ganglia.
Collapse
|