1
|
Corrêa LB, Pinto SR, Alencar LMR, Missailidis S, Rosas EC, Henriques MDGMDO, Santos-Oliveira R. Nanoparticle conjugated with aptamer anti-MUC1/Y for inflammatory arthritis. Colloids Surf B Biointerfaces 2021; 211:112280. [PMID: 34902784 DOI: 10.1016/j.colsurfb.2021.112280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023]
Abstract
Aptamers may form well-defined three-dimensional structures binding with high affinity and stability to a specific receptor. The aptamer anti-MUC1 isoform Y is one the most used due the affinity to MUC1, which is overexpressed in several types of cancer and inflammation process. In this study we have developed, characterized, in vitro as in vivo evaluated a nanoaptamer (anti-MUC1/Y) as a nanoagent for rheumatoid arthritis treatment. The results showed that a nanoaptamer with a size range of 241 nm was produced. The entrapment efficacy was 90% with a biodistribution showing a high hepatic uptake (>98%). The results in vivo showed a potent effect in arthritis experimental model, especially in low doses. The results corroborate the applicability of this nanosystem for RA treatment.
Collapse
Affiliation(s)
- Luana Barbosa Corrêa
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, Rio de Janeiro, RJ 21941-906, Brazil; Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ 21041-361, Brazil
| | - Suyene Rocha Pinto
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, Rio de Janeiro, RJ 21941-906, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Federal University of Maranhão, Laboratory of Biophysics and Nanosystems, Av. dos Portugueses, 1966, Vila Bacanga, São Luís, MA 65080-805, Brazil
| | - Sotiris Missailidis
- Institute of Immunobiological Technology (Bio-Manguinhos),Oswaldo Cruz Foundation, Rio de Janeiro, RJ 21041-361, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ 21041-361, Brazil
| | | | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, Rio de Janeiro, RJ 21941-906, Brazil; Zona Oeste State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, RJ 23070-200, Brazil.
| |
Collapse
|
2
|
Oshi MA, Haider A, Siddique MI, Zeb A, Jamal SB, Khalil AAK, Naeem M. Nanomaterials for chronic inflammatory diseases: the current status and future prospects. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Placha D, Jampilek J. Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Nanosystems. Pharmaceutics 2021; 13:pharmaceutics13010064. [PMID: 33419176 PMCID: PMC7825503 DOI: 10.3390/pharmaceutics13010064] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory diseases, whether caused by excessive stress on certain tissues/parts of the body or arising from infections accompanying autoimmune or secondary diseases, have become a problem, especially in the Western world today. Whether these are inflammations of visceral organs, joints, bones, or the like, they are always a physiological reaction of the body, which always tries to eradicate noxious agents and restore tissue homeostasis. Unfortunately, this often results in damage, often irreversible, to the affected tissues. Nevertheless, these inflammatory reactions of the body are the results of excessive stress, strain, and the generally unhealthy environment, in which the people of Western civilization live. The pathophysiology and pathobiochemistry of inflammatory/autoimmune processes are being studied in deep detail, and pharmaceutical companies are constantly developing new drugs that modulate/suppress inflammatory responses and endogenous pro-inflammatory agents. In addition to new specifically targeted drugs for a variety of pro-inflammatory agents, a strategy can be found for the use of older drugs, which are formulated into special nanodrug delivery systems with targeted distribution and often modified release. This contribution summarizes the current state of research and development of nanoformulated anti-inflammatory agents from both conventional drug classes and experimental drugs or dietary supplements used to alleviate inflammatory reactions.
Collapse
Affiliation(s)
- Daniela Placha
- Nanotechnology Centre, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- Correspondence: (D.P.); (J.J.)
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
- Correspondence: (D.P.); (J.J.)
| |
Collapse
|
4
|
Casein-maltodextrin Maillard conjugates encapsulation enhances the antioxidative potential of proanthocyanidins: An in vitro and in vivo evaluation. Food Chem 2020; 346:128952. [PMID: 33421900 DOI: 10.1016/j.foodchem.2020.128952] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 11/23/2022]
Abstract
Practical application of proanthocyanidins (PAs) as antioxidants is limited because of their hard-to-maintained activities during the processes and storage and in severe gastrointestinal environments. To overcome this challenge, we have developed an easy and green method to encapsulate PAs based on casein-maltodextrin Maillard conjugates. The current work entails the systematic study on the antioxidative potentials of fabricated casein-maltodextrin-PAs nanoparticles (CMPNs). In vitro antioxidant activities of CMPNs remained well during storage in 28 days and treatments under 40-80 °C. In vivo Caenorhabditis elegans (C. elegans) model further showed that the CMPNs could prolong the lifespan of nematodes and protected nematodes from oxidative stress and heat shock. Analyses of intracellular superoxide dismutase and catalase activities also confirmed the existence of an antioxidant protective effect. Besides, in vitro release test showed that the encapsulation enhanced the bioaccessibility of PAs. These results have important implications for the development of novel antioxidants in nutraceutical industries.
Collapse
|
5
|
Therapeutic effects of celecoxib polymeric systems in rat models of inflammation and adjuvant-induced rheumatoid arthritis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111042. [DOI: 10.1016/j.msec.2020.111042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023]
|
6
|
Kim MH, Kim DH, Nguyen DT, Lee HS, Kang NW, Baek MJ, An J, Yoo SY, Mun YH, Lee W, Kim KT, Cho CW, Lee JY, Kim DD. Preparation and Evaluation of Eudragit L100-PEG Proliponiosomes for Enhanced Oral Delivery of Celecoxib. Pharmaceutics 2020; 12:E718. [PMID: 32751591 PMCID: PMC7465340 DOI: 10.3390/pharmaceutics12080718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 01/07/2023] Open
Abstract
PEGylated Eudragit L100 (ELP)-containing proliponiosomes (PLNs) were developed for improved oral delivery of celecoxib (CXB). The successful introduction of PEG 2000 or 5000 to Eudragit L100 (EL) was confirmed via proton nuclear magnetic resonance analysis of which calculated molar substitution ratio of PEG to EL was 36.0 or 36.7, respectively. CXB, ELP, phospholipid, and non-ionic surfactants were dissolved in dimethyl sulfoxide and lyophilized to produce CXB-loaded PLNs (CXB@PLNs). The physical state of CXB@PLNs was evaluated using differential scanning calorimetry and powder X-ray diffractometry, which revealed that crystalline CXB was transformed into amorphous form after the fabrication procedure. The reconstitution of CXB@PLNs in aqueous media generated CXB-loaded liponiosomes with nano-sized mean diameters and spherical morphology. CXB@PLNs displayed enhanced dissolution rate and permeability compared to CXB suspension. In vivo pharmacokinetic studies performed on rats demonstrated the improved oral bioavailability of CXB@PLNs compared to that of CXB suspension. No serious systemic toxicity was observed in the blood biochemistry tests performed on rats. These results suggest that the developed PLNs could be promising oral delivery systems for improving the bioavailability of poorly water-soluble drugs, such as CXB.
Collapse
Affiliation(s)
- Min-Hwan Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.-H.K.); (D.-T.N.); (N.-W.K.); (M.-J.B.)
| | - Dong Hyun Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (D.H.K.); (H.S.L.); (J.A.); (S.-Y.Y.); (Y.-H.M.); (C.-W.C.)
| | - Duy-Thuc Nguyen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.-H.K.); (D.-T.N.); (N.-W.K.); (M.-J.B.)
| | - Han Sol Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (D.H.K.); (H.S.L.); (J.A.); (S.-Y.Y.); (Y.-H.M.); (C.-W.C.)
| | - Nae-Won Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.-H.K.); (D.-T.N.); (N.-W.K.); (M.-J.B.)
| | - Min-Jun Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.-H.K.); (D.-T.N.); (N.-W.K.); (M.-J.B.)
| | - Jiseon An
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (D.H.K.); (H.S.L.); (J.A.); (S.-Y.Y.); (Y.-H.M.); (C.-W.C.)
| | - So-Yeol Yoo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (D.H.K.); (H.S.L.); (J.A.); (S.-Y.Y.); (Y.-H.M.); (C.-W.C.)
| | - Yong-Hyeon Mun
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (D.H.K.); (H.S.L.); (J.A.); (S.-Y.Y.); (Y.-H.M.); (C.-W.C.)
| | - Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Ki-Taek Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea;
| | - Cheong-Weon Cho
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (D.H.K.); (H.S.L.); (J.A.); (S.-Y.Y.); (Y.-H.M.); (C.-W.C.)
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (D.H.K.); (H.S.L.); (J.A.); (S.-Y.Y.); (Y.-H.M.); (C.-W.C.)
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.-H.K.); (D.-T.N.); (N.-W.K.); (M.-J.B.)
| |
Collapse
|
7
|
Janakiraman K, Krishnaswami V, Rajendran V, Natesan S, Kandasamy R. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. MATERIALS TODAY. COMMUNICATIONS 2018; 17:200-213. [PMID: 32289062 PMCID: PMC7104012 DOI: 10.1016/j.mtcomm.2018.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 05/02/2023]
Abstract
Rheumatoid arthritis (RA) is the most common complex multifactorial joint related autoimmune inflammatory disease with unknown etiology accomplished with increased cardiovascular risks. RA is characterized by the clinical findings of synovial inflammation, autoantibody production, and cartilage/bone destruction, cardiovascular, pulmonary and skeletal disorders. Pro-inflammatory cytokines such as IL-1, IL-6, IL-8, and IL-10 were responsible for the induction of inflammation in RA patients. Drawbacks such as poor efficacy, higher doses, frequent administration, low responsiveness, and higher cost and serious side effects were associated with the conventional dosage forms for RA treatment. Nanomedicines were recently gaining more interest towards the treatment of RA, and researchers were also focusing towards the development of various anti-inflammatory drug loaded nanoformulations with an aid to both actively/passively targeting the inflamed site to afford an effective treatment regimen for RA. Alterations in the surface area and nanoscale size of the nanoformulations elicit beneficial physical and chemical properties for better pharmacological activities. These drug loaded nanoformulations may enhances the solubility of poorly water soluble drugs, improves the bioavailability, affords targetability and may improve the therapeutic activity. In this regimen, the present review focus towards the novel nanoparticulate formulations (nanoparticles, nanoemulsions, solid lipid nanoparticles, nanomicelles, and nanocapsules) utilized for the treatment of RA. The recent advancements such as siRNA, peptide and targeted based nanoparticulate systems for RA treatment were also discussed. Special emphasis was provided regarding the pathophysiology, prevalence and symptoms towards the development of RA.
Collapse
Key Words
- A-SLN, actarit loaded solid lipid nanoparticles
- ACF-SLN, aceclofenac loaded solid lipid nanoparticles
- AIA, antigen-induced arthritis
- ALP, alkaline phosphate
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- C-SLN, curcumin loaded solid lipid nanoparticles
- CEL-TS-LN, celecoxib loaded tristearin based lipidic nanoparticles
- CFA, complete freund’s adjuvant
- CHNP, chitosan nanoparticle
- CLSM, confocal laser scanning microscopy
- COX- 1, cyclooxygenase - 1
- COX- 2, cyclooxygenase - 2
- DEX, dexamethasone
- DEX-PMs, dexamethasone-loaded polymeric micelles
- DMARD, disease modifying antirheumatic drugs
- FA, folic acid
- FR-β, folate receptor-beta
- GC, glucocorticoid
- HA- AuNP/TCZ, hyaluronate gold nanoparticle/Tocilizumab
- HEKcells, human embryonic kidney cells
- HSA-NCs, human serum albumin nanocapsules
- HUVEC, human umbilical vein cells
- IL, interleukin
- IND-NMs, indomethacin loaded polymeric micelles
- Ig, immunoglobulin
- Ind-NCs, indomethacin-loaded nanocapsules
- Inflammation
- LDE, lipidic nanoemulsion
- LX-NMs, larnoxicam loaded nanomicelles
- MTX-LCNCs, methotrexate-loaded lipidic core nanocapsules
- NSAIDs, non steroidal anti-inflammatory drugs
- Nanoformulation
- Nanoparticles
- P-SLN, piperine loaded solid lipid nanoparticle
- PCL, polycaprolactone
- PCL-PEG, poly (ethylene glycol)-block-poly (ε-caprolactone)
- PSA, polysialic acid
- PSA-PCL-CyA-NMs, polysialic acid- polycaprolactone cyclosporine A nanomicelles
- Pir-SLN, piroxicam solid lipid nanoparticles
- RA, rheumatoid arthritis
- RGD, arginine-glycine aspartic acid
- RNAi, RNA interference
- Rheumatoid arthritis
- SLN, solid lipid nanoparticles
- TAC-HSA-NPs, tacrolimus human serum albumin nanoparticle
- TAC-LCNCs, tacrolimus loaded lipidic core nanocapsules
- TNF-α, tumour necrosis factor
- VCAM-1, vascular cell adhesion molecule-1
- VEGF, vascular endothelial growth factor
- VIP, vasoactive intestinal peptide
- mRNA, messenger RNA
- shRNA, short hairpin RNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Kumar Janakiraman
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Vijaya Rajendran
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Subramanian Natesan
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Ruckmani Kandasamy
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
8
|
Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm 2016; 108:235-252. [PMID: 27519829 DOI: 10.1016/j.ejpb.2016.08.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/16/2016] [Accepted: 08/01/2016] [Indexed: 01/08/2023]
Abstract
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) were designed as exceptionally safe colloidal carriers for the delivery of poorly soluble drugs. SLN/NLC have the particularity of being composed of excipientsalready approved for use in medicines for human use, which offers a great advantage over any other nanoparticulate system developed from novel materials. Despite this fact, any use of excipients in new route of administration or in new dosage form requires evidence of safety. After 25 years of research on SLN and NLC, enough evidence on their preclinical safety has been published. In the present work, published data on in vitro and in vivo compatibility of SLN/NLC have been surveyed, in order to provide evidence of high biocompatibility distinguished by intended administration route. We also identified critical factors and possible weak points in SLN/NLC formulations, such as the effect of surfactants on the cell viability in vitro, which should be considered for further development.
Collapse
|