1
|
Yan QW, Liu YC, Barrett C, Haake K, Seeler D, May O, Zirkle R. Accumulation of docosapentaenoic acid (n-3 DPA) in a novel isolate of the marine ichthyosporean Sphaeroforma arctica. Biotechnol Lett 2024; 46:373-383. [PMID: 38493279 DOI: 10.1007/s10529-024-03472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/10/2024] [Accepted: 02/10/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE Currently, there is lack of a consistent and highly enriched source for docosapentaenoic acid (n-3 DPA, C22:5), and this work report the isolation of microorganism that naturally produces n-3 DPA. RESULTS In this work, we screened microorganisms in our culture collections with the goal to isolate a strain with high levels of n-3 DPA. We isolated a strain of Sphaeroforma arctica that produces up to 11% n-3 DPA in total fatty acid and has a high n-3 DPA to DHA/EPA ratio. The cell growth of the isolated strain was characterized using microscopy imaging and flow cytometer technologies to confirm the coenocytic pattern of cell divisions previously described in S. arctica. Our novel isolate of S. arctica grew more robustly and produced significantly more n-3 DPA compared to previously isolated and described strains indicating the uniqueness of the discovered strain. CONCLUSION Overall, this work reports a first isolate n-3 DPA producing microorganism and establishes the foundation for future strain improvement and elucidation of the physiological function of this LC-PUFA for human nutrition and health.
Collapse
Affiliation(s)
| | - Ying-Chun Liu
- dsm-firmenich Science and Research, Columbia, MD, USA
| | | | - Kelly Haake
- dsm-firmenich Science and Research, Columbia, MD, USA
| | - Daniel Seeler
- dsm-firmenich Science and Research, Columbia, MD, USA
| | - Oliver May
- dsm-firmenich Science and Research, Biotechnology, Kaiseraugst, Switzerland
| | - Ross Zirkle
- dsm-firmenich Science and Research, Columbia, MD, USA.
| |
Collapse
|
2
|
Association of Maternal Erythrocyte PUFA during Pregnancy with Offspring Allergy in the Chinese Population. Nutrients 2022; 14:nu14112312. [PMID: 35684115 PMCID: PMC9182582 DOI: 10.3390/nu14112312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Findings on prenatal polyunsaturated fatty acids (PUFA) and offspring allergies have been inconsistent, and the majority of studies have focused on Western populations. This study aimed to investigate the associations between maternal erythrocyte PUFA and offspring allergies in the first 2 years in the Chinese population. We included 573 mother–infant pairs from a birth cohort. Based on the outpatient medical records, we identified the diagnosis and time of offspring allergic disease onset. We measured erythrocyte fatty acids by gas chromatography. Associations were examined using Cox regression. We found that higher maternal total PUFA levels (HR = 0.80; 95% CI: 0.68, 0.94), especially of arachidonic acid (AA) (HR = 0.79; 95% CI: 0.65, 0.97) and n-3 PUFA (HR = 0.77; 95% CI: 0.62, 0.97), were associated with reduced risk of offspring allergies. Similar results were found for eczema. Compared with children without a maternal allergy history, the associations of total PUFA (p = 0.028) and n-6 PUFA (p = 0.013) with offspring allergies were stronger in those with a maternal allergy history. Maternal erythrocyte total PUFA, especially AA, and n-3 PUFA were inversely associated with offspring allergies within 2 years of age. There was a significant interaction between maternal allergy history and maternal PUFA in offspring allergies.
Collapse
|
3
|
Wilms JN, Hare KS, Fischer-Tlustos AJ, Vahmani P, Dugan MER, Leal LN, Steele MA. Fatty acid profile characterization in colostrum, transition milk, and mature milk of primi- and multiparous cows during the first week of lactation. J Dairy Sci 2022; 105:4692-4710. [PMID: 35473965 DOI: 10.3168/jds.2022-20880a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 01/03/2023]
Abstract
The specific fatty acid (FA) profile of colostrum may indicate a biological requirement for neonatal calves. The objective of this study was to characterize the FA profile and yields in colostrum, transition milk, and mature milk in primiparous (PP) and multiparous (MP) cows. Colostrum was milked from 10 PP and 10 MP Holstein cows fed the same pre- and postpartum rations. Milkings (M) 2 to 5 and 12 were respectively termed transition and mature milk. Overall, short-chain FA (C4:0 and C6:0) were 61 and 50% lower in colostrum than mature milk, respectively. A parity by milking interaction was also present, with higher C4:0 for PP cows at M2 and for MP cows at M12. Additionally, higher concentrations of C6:0 were present for PP cows at M2 through M4 and for MP cows at M12. Palmitic (C16:0) and myristic (C14:0) acids were 38% and 19% higher in colostrum than mature milk, respectively. However, total saturated FA remained relatively stable. Branched-chain FA were 13% lower in colostrum than mature milk and higher in PP than MP cows throughout the milking period. The proportion of trans-monounsaturated FA (MUFA) was 72% higher in PP cows throughout the milking period, as well as 13% lower in colostrum than mature milk. In contrast, cis-MUFA and total MUFA were not affected by milking nor parity. Linoleic acid (LA) was 25% higher in colostrum than transition and mature milks, but α-linolenic acid (ALA) did not differ. Consequently, the ratio of LA to ALA was 29% higher in colostrum than mature milk and 33% higher in MP cows. Linoleic acid was also 15% higher in MP cows, whereas ALA was 15% higher in PP cows. Conjugated linoleic acid (CLA, cis-9,trans-11) was 2.7-fold higher in PP cows, and no differences between colostrum and mature milk were detected. Overall, polyunsaturated FA (PUFA) from the n-6 and n-3 series were over 40% higher in colostrum compared with transition and mature milk. Milking by parity interactions were present for arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), and total n-3 PUFA, translating to higher proportions in PP cows in M1 to M3, whereas proportions remained relatively stable throughout the milking period in MP cows. Despite increasing milk yields throughout the subsequent milkings, higher yields of EPA, ARA, DPA, and DHA were present in colostrum than in mature milk. Greater proportions and yields of n-3 and n-6 FA in colostrum may translate to specific requirements for newborn calves. Differences were also observed between PP and MP cows and may reflect different nutrient requirements and partitioning.
Collapse
Affiliation(s)
- J N Wilms
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; Trouw Nutrition R&D, 3800 AG Amersfoort, the Netherlands
| | - K S Hare
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - A J Fischer-Tlustos
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - P Vahmani
- Department of Animal Science, University of California, Davis 95616
| | - M E R Dugan
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB T4L 1V7, Canada
| | - L N Leal
- Trouw Nutrition R&D, 3800 AG Amersfoort, the Netherlands
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
4
|
Wilms JN, Hare KS, Fischer-Tlustos AJ, Vahmani P, Dugan MER, Leal LN, Steele MA. Fatty acid profile characterization in colostrum, transition milk, and mature milk of primi- and multiparous cows during the first week of lactation. J Dairy Sci 2022; 105:2612-2630. [PMID: 35033345 DOI: 10.3168/jds.2021-20880] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022]
Abstract
The specific fatty acid (FA) profile of colostrum may indicate a biological requirement for neonatal calves. The objective of this study was to characterize the FA profile and yields in colostrum, transition milk, and mature milk in primiparous (PP) and multiparous (MP) cows. Colostrum was milked from 10 PP and 10 MP Holstein cows fed the same pre- and postpartum rations. Milkings (M) 2 to 5 and 12 were respectively termed transition and mature milk. Overall, short-chain FA (C4:0 and C6:0) were 61 and 50% lower in colostrum than mature milk, respectively. A parity by milking interaction was also present, with higher C4:0 for PP cows at M2 and for MP cows at M12. Additionally, higher concentrations of C6:0 were present for PP cows at M2 through M4 and for MP cows at M12. Palmitic (C16:0) and myristic (C14:0) acids were 16% and 27% higher in colostrum than mature milk, respectively. However, total saturated FA remained relatively stable. Branched-chain FA were 13% lower in colostrum than mature milk and higher in PP than MP cows throughout the milking period. The proportion of trans-monounsaturated FA (MUFA) was 42% higher in PP cows throughout the milking period, as well as 15% lower in colostrum than mature milk. In contrast, cis-MUFA and total MUFA were not affected by milking nor parity. Linoleic acid (LA) was 13% higher in colostrum than transition and mature milks, but α-linolenic acid (ALA) did not differ. Consequently, the ratio of LA to ALA was 23% higher in colostrum than mature milk and 25% higher in MP cows. Linoleic acid was also 13% higher in MP cows, whereas ALA was 15% higher in PP cows. Conjugated linoleic acid (CLA, cis-9,trans-11) was 63% higher in PP cows, and no differences between colostrum and mature milk were detected. Overall, polyunsaturated FA (PUFA) from the n-6 and n-3 series were over 25% higher in colostrum compared with transition and mature milk. Milking by parity interactions were present for arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), and total n-3 PUFA, translating to higher proportions in PP cows in M1 to M3, whereas proportions remained relatively stable throughout the milking period in MP cows. Despite increasing milk yields throughout the subsequent milkings, higher yields of EPA, ARA, DPA, and DHA were present in colostrum than in mature milk. Greater proportions and yields of n-3 and n-6 FA in colostrum may translate to specific requirements for newborn calves. Differences were also observed between PP and MP cows and may reflect different nutrient requirements and partitioning.
Collapse
Affiliation(s)
- J N Wilms
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; Trouw Nutrition R&D, 3800 AG Amersfoort, the Netherlands
| | - K S Hare
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - A J Fischer-Tlustos
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - P Vahmani
- Department of Animal Science, University of California, Davis 95616
| | - M E R Dugan
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB T4L 1V7, Canada
| | - L N Leal
- Trouw Nutrition R&D, 3800 AG Amersfoort, the Netherlands
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
5
|
Sustainable production of food grade omega-3 oil using aquatic protists: Reliability and future horizons. N Biotechnol 2021; 62:32-39. [PMID: 33486117 DOI: 10.1016/j.nbt.2021.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Biotechnological production of omega-3 polyunsaturated fatty acids (PUFAs) has become a commercial alternative to fish oil in the past twenty years. Compared to PUFA production by fatty fishes, that from microorganisms has increased due to its promising sustainability and high product safety and to increasing awareness in the expanding vegan market. Although autotrophic production by microalgae seems to be more sustainable in the long term, to date most of the microbial production of omega-3 is carried out under heterotrophic conditions using conventional fermentation technologies. The present review critically analyzes the main reasons for this discrepancy and reports on the recent advances and the most promising approaches for its future development in the context of sustainability and circular economy.
Collapse
|
6
|
Garcia-Dominguez X, Marco-Jiménez F, Peñaranda DS, Diretto G, García-Carpintero V, Cañizares J, Vicente JS. Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer. Sci Rep 2020; 10:11313. [PMID: 32647175 PMCID: PMC7347584 DOI: 10.1038/s41598-020-68195-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
The advent of assisted reproductive technologies (ART) in mammals involved an extraordinary change in the environment where the beginning of a new organism takes place. Under in vitro conditions, in which ART is currently being performed, it likely fails to mimic optimal in vivo conditions. This suboptimal environment could mediate in the natural developmental trajectory of the embryo, inducing lasting effects until later life stages that may be inherited by subsequent generations (transgenerational effects). Therefore, we evaluated the potential transgenerational effects of embryo exposure to the cryopreservation-transfer procedure in a rabbit model on the offspring phenotype, molecular physiology of the liver (transcriptome and metabolome) and reproductive performance during three generations (F1, F2 and F3). The results showed that, compared to naturally-conceived animals (NC group), progeny generated after embryo exposure to the cryopreservation-transfer procedure (VT group) exhibited lower body growth, which incurred lower adult body weight in the F1 (direct effects), F2 (intergenerational effects) and F3 (transgenerational effects) generations. Furthermore, VT animals showed intergenerational effects on heart weight and transgenerational effects on liver weight. The RNA-seq data of liver tissue revealed 642 differentially expressed transcripts (DETs) in VT animals from the F1 generation. Of those, 133 were inherited from the F2 and 120 from the F3 generation. Accordingly, 151, 190 and 159 differentially accumulated metabolites (DAMs) were detected from the F1, F2 and F3, respectively. Moreover, targeted metabolomics analysis demonstrated that transgenerational effects were mostly presented in the non-polar fraction. Functional analysis of molecular data suggests weakened zinc and fatty acid metabolism across the generations, associated with alterations in a complex molecular network affecting global hepatic metabolism that could be associated with the phenotype of VT animals. However, these VT animals showed proper reproductive performance, which verified a functional health status. In conclusion, our results establish the long-term transgenerational effects following a vitrified embryo transfer procedure. We showed that the VT phenotype could be the result of the manifestation of embryonic developmental plasticity in response to the stressful conditions during ART procedures.
Collapse
Affiliation(s)
- Ximo Garcia-Dominguez
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - Francisco Marco-Jiménez
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - David S Peñaranda
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - Gianfranco Diretto
- National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, 00123, Rome, Italy
| | - Víctor García-Carpintero
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, 46022, Valencia, Spain
| | - Joaquín Cañizares
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, 46022, Valencia, Spain
| | - José S Vicente
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
7
|
Drouin G, Rioux V, Legrand P. The n-3 docosapentaenoic acid (DPA): A new player in the n-3 long chain polyunsaturated fatty acid family. Biochimie 2019; 159:36-48. [DOI: 10.1016/j.biochi.2019.01.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
|
8
|
Castejón N, Señoráns FJ. Strategies for Enzymatic Synthesis of Omega‐3 Structured Triacylglycerols from
Camelina sativa
Oil Enriched in EPA and DHA. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Natalia Castejón
- Healthy‐Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid28049 MadridSpain
| | - Francisco J. Señoráns
- Healthy‐Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid28049 MadridSpain
| |
Collapse
|
9
|
Urrutia P, Arrieta R, Alvarez L, Cardenas C, Mesa M, Wilson L. Immobilization of lipases in hydrophobic chitosan for selective hydrolysis of fish oil: The impact of support functionalization on lipase activity, selectivity and stability. Int J Biol Macromol 2018; 108:674-686. [DOI: 10.1016/j.ijbiomac.2017.12.062] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/06/2017] [Accepted: 12/10/2017] [Indexed: 02/03/2023]
|
10
|
Zeng SY, Liu HH, Shi TQ, Song P, Ren LJ, Huang H, Ji XJ. Recent Advances in Metabolic Engineering ofYarrowia lipolyticafor Lipid Overproduction. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700352] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Si-Yu Zeng
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Hu-Hu Liu
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Ping Song
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No.5 Xinmofan Road Nanjing 210009 P. R. China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No.5 Xinmofan Road Nanjing 210009 P. R. China
- School of Pharmaceutical Sciences; Nanjing Tech University; No.30 South Puzhu Road Nanjing 211816 P. R. of China
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; No.5 Xinmofan Road Nanjing 210009 P. R. China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No.5 Xinmofan Road Nanjing 210009 P. R. China
| |
Collapse
|