1
|
Tsevdou M, Ntzimani A, Katsouli M, Dimopoulos G, Tsimogiannis D, Taoukis P. Comparative Study of Microwave, Pulsed Electric Fields, and High Pressure Processing on the Extraction of Antioxidants from Olive Pomace. Molecules 2024; 29:2303. [PMID: 38792161 PMCID: PMC11123897 DOI: 10.3390/molecules29102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil production is characterized by large amounts of waste, and yet is considerably highly valued. Olive pomace can serve as a cheap source of bioactive compounds (BACs) with important antioxidant activity. Novel technologies like Pulsed Electric Fields (PEF) and High Pressure (HP) and microwave (MW) processing are considered green alternatives for the recovery of BACs. Different microwave (150-600 W), PEF (1-5 kV/cm field strength, 100-1500 pulses/15 µs width), and HP (250-650 MPa) conditions, in various product/solvent ratios, methanol concentrations, extraction temperatures, and processing times were investigated. Results indicated that the optimal MW extraction conditions were 300 W at 50 °C for 5 min using 60% v/v methanol with a product/solvent ratio of 1:10 g/mL. Similarly, the mix of 40% v/v methanol with olive pomace, treated at 650 MPa for the time needed for pressure build-up (1 min) were considered as optimal extraction conditions in the case of HP, while for PEF the optimal conditions were 60% v/v methanol with a product/solvent ratio of 1:10 g/mL, treated at 5000 pulses, followed by 1 h extraction under stirring conditions. Therefore, these alternative extraction technologies could assist the conventional practice in minimizing waste production and simultaneously align with the requirements of the circular bioeconomy concept.
Collapse
Affiliation(s)
| | | | | | | | | | - Petros Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Heroon Polytechniou Str., 15780 Athens, Greece; (M.T.); (A.N.); (M.K.); (G.D.); (D.T.)
| |
Collapse
|
2
|
Lanza B, Bacceli M, Di Marco S, Simone N, Di Loreto G, Flamminii F, Mollica A, Cichelli A. A New Culture Medium Rich in Phenols Used for Screening Bitter Degrading Strains of Lactic Acid Bacteria to Employ in Table Olive Production. Molecules 2024; 29:2236. [PMID: 38792098 PMCID: PMC11123894 DOI: 10.3390/molecules29102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The olive oil industry recently introduced a novel multi-phase decanter with the "Leopard DMF" series, which gives a by-product called pâté, made up of pulp and olive wastewater with a high content of phenolic substances and without pits. This study aims to create a new culture medium, the Olive Juice Broth (OJB), from DMF pâté, and apply it to select bacteria strains able to survive and degrade the bitter substances normally present in the olive fruit. Thirty-five different bacterial strains of Lactiplantibacillus plantarum from the CREA-IT.PE Collection of Microorganisms were tested. Seven strains characterized by ≥50% growth in OJB (B31, B137, B28, B39, B124, B130, and B51) showed a degradation of the total phenolic content of OJB ≥ 30%. From this set, L. plantarum B51 strain was selected as a starter for table olive production vs. spontaneous fermentation. The selected inoculant effectively reduced the debittering time compared to spontaneous fermentation. Hydroxytyrosol, derived from oleuropein and verbascoside degradation, and tyrosol, derived from ligstroside degradation, were produced faster than during spontaneous fermentation. The OJB medium is confirmed to be useful in selecting bacterial strains resistant to the complex phenolic environment of the olive fruit.
Collapse
Affiliation(s)
- Barbara Lanza
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Nazionale S.S. 602 km 51 + 355, 65012 Cepagatti, PE, Italy or (M.B.); (S.D.M.); (G.D.L.)
| | - Martina Bacceli
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Nazionale S.S. 602 km 51 + 355, 65012 Cepagatti, PE, Italy or (M.B.); (S.D.M.); (G.D.L.)
- School of Advanced Studies, XXXVIII Cycle Ph.D. Course in Biomolecular and Pharmaceutical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 66013 Chieti, CH, Italy
| | - Sara Di Marco
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Nazionale S.S. 602 km 51 + 355, 65012 Cepagatti, PE, Italy or (M.B.); (S.D.M.); (G.D.L.)
| | - Nicola Simone
- Council for Agricultural Research and Economics (CREA), UDG8, Via Nazionale S.S. 602 km 51 + 355, 65012 Cepagatti, PE, Italy;
| | - Giuseppina Di Loreto
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Nazionale S.S. 602 km 51 + 355, 65012 Cepagatti, PE, Italy or (M.B.); (S.D.M.); (G.D.L.)
| | - Federica Flamminii
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, CH, Italy; (F.F.); (A.C.)
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 66013 Chieti, CH, Italy;
| | - Angelo Cichelli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, CH, Italy; (F.F.); (A.C.)
| |
Collapse
|
3
|
Foti P, Russo N, Randazzo CL, Choupina AB, Pino A, Caggia C, Romeo FV. Profiling of phenol content and microbial community dynamics during pâté olive cake fermentation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Kainat S, Arshad MS, Khalid W, Zubair Khalid M, Koraqi H, Afzal MF, Noreen S, Aziz Z, Al-Farga A. Sustainable novel extraction of bioactive compounds from fruits and vegetables waste for functional foods: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2144884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sumaya Kainat
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
| | | | - Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Hyrije Koraqi
- Faculty of Food Science and Biotechnology, UBT-Higher Education Institution, Pristina, Kosovo
| | | | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zaira Aziz
- General Medicine, Pakistan institute of Medical Sciences, Islamabad, Pakistan
| | - Ammar Al-Farga
- Department of Food Science, Faculty of Agriculture, Ibb University, Ibb Yemen
| |
Collapse
|
5
|
Industrial drying for agrifood by-products re-use: cases studies on pomegranate peel (Punica granatum L.) and stoned olive pomace (pâtè, Olea europaea L.). Food Chem 2022; 403:134338. [DOI: 10.1016/j.foodchem.2022.134338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/29/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
|
6
|
Cecchi L, Migliorini M, Giambanelli E, Canuti V, Bellumori M, Mulinacci N, Zanoni B. Exploitation of virgin olive oil by-products (Olea europaea L.): phenolic and volatile compounds transformations phenomena in fresh two-phase olive pomace ('alperujo') under different storage conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2515-2525. [PMID: 34676895 PMCID: PMC9298029 DOI: 10.1002/jsfa.11593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Much effort has recently been spent for re-using virgin olive oil by-products as nutraceutical ingredients for human diet thanks to their richness in bioactive phenols, but their management is not easy for producers. We aimed to provide useful information for a better management of fresh olive pomace before drying, by studying the phenolic and volatile compounds transformations phenomena of fresh olive pomace stored under different conditions planned to simulate controlled and uncontrolled temperature conditions in olive oil mills. RESULTS The evolution of the phenolic and volatile compounds was studied by high-performance liquid chromatography-diode array detector mass spectrometry (HPLC-DAD-MS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The phenolic profile varied rapidly during storage: the verbascoside content decreased about 70% after 17 days even at 4 °C, while the content of simple phenols such as hydroxytyrosol and caffeic acid increased over time. The low temperature was able to slow down these phenomena. A total of 94 volatile organic compounds (VOCs) were detected in the fresh olive pomace, with a prevalence of lipoxygenase (LOX) VOCs (78%), mainly aldehydes (19 490.9 μg kg-1 ) despite the higher number of alcohols. A decrease in LOX volatiles and a quick development of the ones linked to off-flavors (carboxylic acids, alcohols, acetates) were observed, in particular after 4 days of storage at room temperature. Only storage at 4 °C allowed these phenomena to be slowed down. CONCLUSION To preserve the natural phenolic phytocomplex of fresh olive pomace before drying and to avoid off-flavors development, storage in open containers must be avoided and a short storage in cold rooms (7-10 days) is to be preferred. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Lorenzo Cecchi
- Department of NEUROFARBAUniversity of FlorenceFlorenceItaly
| | | | | | - Valentina Canuti
- Department of AgriculturalFood and Forestry Systems Management (DAGRI), University of FlorenceFlorenceItaly
| | | | | | - Bruno Zanoni
- Department of AgriculturalFood and Forestry Systems Management (DAGRI), University of FlorenceFlorenceItaly
| |
Collapse
|
7
|
Olive Cake Powder as Functional Ingredient to Improve the Quality of Gluten-Free Breadsticks. Foods 2022; 11:foods11040552. [PMID: 35206029 PMCID: PMC8871176 DOI: 10.3390/foods11040552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
The growing demand for high-quality gluten-free baked snacks has led researchers to test innovative ingredients. The aim of this work was to assess the feasibility of olive cake powder (OCP) to be used as a functional ingredient in gluten-free (GF) breadsticks. OCP was used by replacing 1, 2, and 3% of maize flour into GF breadstick production (BS1, BS2, BS3, respectively), and their influence on nutritional, bioactive, textural, and sensorial properties was assessed and compared with a control sample (BSC). BS1, BS2, and BS3 showed a higher lipid, moisture, and ash content. BS2 and BS3 had a total dietary fibre higher than 3 g 100 g−1, achieving the nutritional requirement for it to be labelled as a “source of fibre”. The increasing replacement of olive cake in the formulation resulted in progressively higher total phenol content and antioxidant activity for fortified GF breadsticks. The L* and b* values decreased in all enriched GF breadsticks when compared with the control, while hardness was the lowest in BS3. The volatile profile highlighted a significant reduction in aldehydes, markers of lipid oxidation, and Maillard products (Strecker aldehydes, pyrazines, furans, ketones) in BS1, BS2, and BS3 when compared with BSC. The sensory profile showed a strong influence of OCP addition on GF breadsticks for almost all the parameters considered, with a higher overall pleasantness score for BS2 and BS3.
Collapse
|
8
|
Olive Pomace and Pâté Olive Cake as Suitable Ingredients for Food and Feed. Microorganisms 2022; 10:microorganisms10020237. [PMID: 35208692 PMCID: PMC8880501 DOI: 10.3390/microorganisms10020237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Olive oil extraction generates several by-products that represent an environmental issue, mainly for Mediterranean countries where olive oil is mostly produced. These by-products represent an ecological issue for their phenolic components, such as oleuropein, hydroxytyrosol, and tyrosol. However, olive oil by-products can be treated and properly exploited in different fields for their health-promoting properties, and they represent great potential for the food and beverage, cosmetic, and pharmaceutical industries. Furthermore, recovery and treatment processes can contribute to efficient waste management, which can enhance the sustainability of the olive oil industry, and in turn, lead to relevant economic benefits. The solid waste, i.e., olive pomace, could be considered to be a suitable matrix or primary resource of molecules with high added value due to their high phenolic content. Olive pomace, at different moisture contents, is the main by-product obtained from two- or three-phase extraction systems. A commonly used centrifugal extraction system, i.e., a multiphase decanter (DMF), does not require the addition of water and can generate a new by-product called pâté or olive pomace cake, consisting of moist pulp that is rich in phenols, in particular, secoiridoids, without any trace of kernel. Although several reviews have been published on olive wastes, only a few reviews have specifically focused on the solid by-products. Therefore, the aim of the present review is to provide a comprehensive overview on the current valorization of the main solid olive oil by-products, in particular, olive pomace or pâté olive cake, highlighting their use in different fields, including human nutrition.
Collapse
|
9
|
Bellumori M, De Marchi L, Mainente F, Zanoni F, Cecchi L, Innocenti M, Mulinacci N, Zoccatelli G. A by‐product from virgin olive oil production (pâté) encapsulated by fluid bed coating: evaluation of the phenolic profile after shelf‐life test and
in
vitro
gastrointestinal digestion. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Bellumori
- Department of NEUROFARBA Division of Pharmaceutical and Nutraceutical Sciences University of Florence via U. Schiff 6, 50019 Sesto F.no Florence Italy
| | - Laura De Marchi
- Department of Biotechnology University of Verona Strada Le Grazie 15 Verona37134Italy
| | - Federica Mainente
- Department of Biotechnology University of Verona Strada Le Grazie 15 Verona37134Italy
| | | | - Lorenzo Cecchi
- Department of NEUROFARBA Division of Pharmaceutical and Nutraceutical Sciences University of Florence via U. Schiff 6, 50019 Sesto F.no Florence Italy
| | - Marzia Innocenti
- Department of NEUROFARBA Division of Pharmaceutical and Nutraceutical Sciences University of Florence via U. Schiff 6, 50019 Sesto F.no Florence Italy
| | - Nadia Mulinacci
- Department of NEUROFARBA Division of Pharmaceutical and Nutraceutical Sciences University of Florence via U. Schiff 6, 50019 Sesto F.no Florence Italy
| | - Gianni Zoccatelli
- Department of Biotechnology University of Verona Strada Le Grazie 15 Verona37134Italy
- Sphera Encapsulation Srl Verona37134Italy
| |
Collapse
|
10
|
Cecchi L, Migliorini M, Giambanelli E, Cane A, Mulinacci N, Zanoni B. Volatile Profile of Two-Phase Olive Pomace (Alperujo) by HS-SPME-GC-MS as a Key to Defining Volatile Markers of Sensory Defects Caused by Biological Phenomena in Virgin Olive Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5155-5166. [PMID: 33902289 PMCID: PMC8278492 DOI: 10.1021/acs.jafc.1c01157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
An olive pomace from the two-phase decanter stored in different conditions was used as a model to simulate the detrimental biological phenomena occurring during olive oil processing and storage. A group of EVOO and defective oils were also analyzed. The volatile fraction was studied with HS-SPME-GC-MS; 127 volatiles were identified (55 of which tentatively identified) and evaluated over time. Seven volatiles were tentatively identified for the first time in olive oil; the role of C6 alcohols in detrimental biological phenomena was highlighted. Suitable volatile markers for defects of microbiological origin were defined, particularly the fusty/muddy sediment. They were then applied to olive oils with different quality categories; one of the markers was able to discriminate among EVOOs and all the defective samples, including the borderline ones. The marker was constituted by the sum of concentrations of 10 esters, 4 alcohols, 1 ketone, and 1 α-hydroxy-ketone but no carboxylic acids.
Collapse
Affiliation(s)
- Lorenzo Cecchi
- Department
of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy
| | - Marzia Migliorini
- Carapelli
Firenze S.p.A., Via Leonardo
da Vinci 31, Tavarnelle Val di Pesa, 50028 Firenze, Italy
| | - Elisa Giambanelli
- Carapelli
Firenze S.p.A., Via Leonardo
da Vinci 31, Tavarnelle Val di Pesa, 50028 Firenze, Italy
| | - Anna Cane
- Carapelli
Firenze S.p.A., Via Leonardo
da Vinci 31, Tavarnelle Val di Pesa, 50028 Firenze, Italy
| | - Nadia Mulinacci
- Department
of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy
| | - Bruno Zanoni
- Department
of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144 Florence, Italy
| |
Collapse
|
11
|
Balli D, Cecchi L, Innocenti M, Bellumori M, Mulinacci N. Food by-products valorisation: Grape pomace and olive pomace (pâté) as sources of phenolic compounds and fiber for enrichment of tagliatelle pasta. Food Chem 2021; 355:129642. [PMID: 33799243 DOI: 10.1016/j.foodchem.2021.129642] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 01/10/2023]
Abstract
Wine and olive oil making by-products are rich sources of bioactive compounds suitable for new healthy recipes of staple foods. In this study, the profile of pasta (tagliatelle) fortified with 7% of grape pomace (GP) or olive pomace (pâté, OP) was studied, focusing on phenolic compounds after cooking. The enriched tagliatelle retained the same monoglycosylated and acetylated anthocyanins found in grape pomace. The fortified tagliatelle with a new milling by-product called pâté retained hydroxytyrosol after cooking (6.6 mg/100 g). In both the two types of enriched tagliatelle the fiber content increased of approx. 3%, while the added phenols retained after cooking by tagliatelle fortified with GP and OP were 6.21 mg/100 g and 9 mg/100 g, respectively. The fortified tagliatelle retained a good cooking resistance and a good texture after cooking, thus enhancing the nutritional profile of pasta, a staple food usually characterized by a negligible amount of phenolic compounds and fiber.
Collapse
Affiliation(s)
- Diletta Balli
- Department of NEUROFARBA, Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Cecchi
- Department of NEUROFARBA, Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | - Marzia Innocenti
- Department of NEUROFARBA, Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Maria Bellumori
- Department of NEUROFARBA, Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Nadia Mulinacci
- Department of NEUROFARBA, Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
12
|
Contreras MDM, Gómez-Cruz I, Romero I, Castro E. Olive Pomace-Derived Biomasses Fractionation through a Two-Step Extraction Based on the Use of Ultrasounds: Chemical Characteristics. Foods 2021; 10:111. [PMID: 33430320 PMCID: PMC7825784 DOI: 10.3390/foods10010111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Olive-derived biomass is not only a renewable bioenergy resource but also it can be a source of bioproducts, including antioxidants. In this study, the antioxidant composition of extracted olive pomace (EOP) and a new byproduct, the residual fraction from olive pit cleaning (RFOPC or residual pulp) was characterized and compared to olive leafy biomass, which have been extensively studied as a source of antioxidants and other bioactive compounds with pharmacological properties. The chemical characterization showed that these byproducts contain a high amount of extractives; in the case of EOP, it was even higher (52.9%) than in olive leaves (OL) and olive mill leaves (OML) (35.8-45.1%). Then, ultrasound-assisted extraction (UAE) was applied to recover antioxidants from the extractive fraction of these biomasses. The solubilization of antioxidants was much higher for EOP, correlating well with the extractives content and the total extraction yield. Accordingly, this also affected the phenolic richness of the extracts and the differences between all biomasses were diminished. In any case, the phenolic profile and the hydroxytyrosol cluster were different. While OL, OML, and EOP contained mainly hydroxytyrosol derivatives and flavones, RFOPC presented novel trilignols. Other compounds were also characterized, including secoiridoids, hydroxylated fatty acids, triterpenoids, among others, depending on the bioresource. Moreover, after the UAE extraction step, alkaline extraction was applied recovering a liquid and a solid fraction. While the solid fraction could of interest for further valorization as a biofuel, the liquid fraction contained proteins, sugars, and soluble lignin, which conferred antioxidant properties to these extracts, and whose content depended on the biomass and conditions applied.
Collapse
Affiliation(s)
- María del Mar Contreras
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Irene Gómez-Cruz
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Inmaculada Romero
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
13
|
Lanza B, Cellini M, Di Marco S, D’Amico E, Simone N, Giansante L, Pompilio A, Di Loreto G, Bacceli M, Del Re P, Di Bonaventura G, Di Giacinto L, Aceto GM. Olive Pâté by Multi-Phase Decanter as Potential Source of Bioactive Compounds of Both Nutraceutical and Anticancer Effects. Molecules 2020; 25:molecules25245967. [PMID: 33339392 PMCID: PMC7767102 DOI: 10.3390/molecules25245967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 11/16/2022] Open
Abstract
In the oil sector, a novelty in the centrifugal extraction system is represented by the multi-phase decanters (DMF) that work without adding process water and with the advantage of recovering a dried pomace and a by-product, called “pâté”, consisting of the pulp and its vegetation water, without traces of stone. The pâté has a high content of phenolic compounds, mainly represented by secoiridoids and verbascoside. The present work investigated the efficacy of two different ways of debittering (by sequential filtrations and spontaneous fermentation) of DMF pâté from three olive cultivars (Olea europaea L. “Leccino”, “Carboncella” and “Tortiglione”) to make the pâté edible, and, contemporary, investigated also the effect of its phenolic bioactive extracts on pathogenic bacteria and colon cancer cell model. Daily filtrations of pâté of the three cultivars have been shown to be more efficient in phenolic degradation. The activity of the indigenous microflora on the other hand takes a longer time to degrade the phenolic component and therefore to de-bitter it. None of pâté showed antibacterial activity. Colorimetric assay MTS for cell viability and metabolic activity tested on colon cancer cells Caco-2 and HCT116 suggest a potential beneficial effect of the dried extracts probably related to the modulation of gene expression under these treatments.
Collapse
Affiliation(s)
- Barbara Lanza
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Lombardia, 65012 Cepagatti, Italy; (M.C.); (S.D.M.); (N.S.); (L.G.); (G.D.L.); (M.B.); (P.D.R.); (L.D.G.)
- Correspondence:
| | - Martina Cellini
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Lombardia, 65012 Cepagatti, Italy; (M.C.); (S.D.M.); (N.S.); (L.G.); (G.D.L.); (M.B.); (P.D.R.); (L.D.G.)
| | - Sara Di Marco
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Lombardia, 65012 Cepagatti, Italy; (M.C.); (S.D.M.); (N.S.); (L.G.); (G.D.L.); (M.B.); (P.D.R.); (L.D.G.)
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (A.P.); (G.D.B.); (G.M.A.)
| | - Nicola Simone
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Lombardia, 65012 Cepagatti, Italy; (M.C.); (S.D.M.); (N.S.); (L.G.); (G.D.L.); (M.B.); (P.D.R.); (L.D.G.)
| | - Lucia Giansante
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Lombardia, 65012 Cepagatti, Italy; (M.C.); (S.D.M.); (N.S.); (L.G.); (G.D.L.); (M.B.); (P.D.R.); (L.D.G.)
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (A.P.); (G.D.B.); (G.M.A.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Giuseppina Di Loreto
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Lombardia, 65012 Cepagatti, Italy; (M.C.); (S.D.M.); (N.S.); (L.G.); (G.D.L.); (M.B.); (P.D.R.); (L.D.G.)
| | - Martina Bacceli
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Lombardia, 65012 Cepagatti, Italy; (M.C.); (S.D.M.); (N.S.); (L.G.); (G.D.L.); (M.B.); (P.D.R.); (L.D.G.)
| | - Paolo Del Re
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Lombardia, 65012 Cepagatti, Italy; (M.C.); (S.D.M.); (N.S.); (L.G.); (G.D.L.); (M.B.); (P.D.R.); (L.D.G.)
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (A.P.); (G.D.B.); (G.M.A.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Luciana Di Giacinto
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Lombardia, 65012 Cepagatti, Italy; (M.C.); (S.D.M.); (N.S.); (L.G.); (G.D.L.); (M.B.); (P.D.R.); (L.D.G.)
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (A.P.); (G.D.B.); (G.M.A.)
| |
Collapse
|
14
|
Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. BIOLOGY 2020; 9:biology9120450. [PMID: 33291288 PMCID: PMC7762183 DOI: 10.3390/biology9120450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022]
Abstract
Simple Summary Olive oil is the most common vegetable oil used for human nutrition, and its production represents a major economic sector in Mediterranean countries. The milling industry generates large amounts of liquid and solid residues, whose disposal is complicated and costly due to their polluting properties. However, olive mill waste (OMW) may also be seen as a source of valuable biomolecules including plant nutrients, anthocyanins, flavonoids, polysaccharides, and phenolic compounds. This review describes recent advances and multidisciplinary approaches in the identification and isolation of valuable natural OMW-derived bioactive molecules. Such natural compounds may be potentially used in numerous sustainable applications in agriculture such as fertilizers, biostimulants, and biopesticides in alternative to synthetic substances that have a negative impact on the environment and are harmful to human health. Abstract Olive oil production generates high amounts of liquid and solid wastes. For a long time, such complex matrices were considered only as an environmental issue, due to their polluting properties. On the other hand, olive mill wastes (OMWs) exert a positive effect on plant growth when applied to soil due to the high content of organic matter and mineral nutrients. Moreover, OMWs also exhibit antimicrobial activity and protective properties against plant pathogens possibly due to the presence of bioactive molecules including phenols and polysaccharides. This review covers the recent advances made in the identification, isolation, and characterization of OMW-derived bioactive molecules able to influence important plant processes such as plant growth and defend against pathogens. Such studies are relevant from different points of view. First, basic research in plant biology may benefit from the isolation and characterization of new biomolecules to be potentially applied in crop growth and protection against diseases. Moreover, the valorization of waste materials is necessary for the development of a circular economy, which is foreseen to drive the future development of a more sustainable agriculture.
Collapse
|
15
|
Sefrin Speroni C, Rigo Guerra D, Beutinger Bender AB, Stiebe J, Ballus CA, Picolli da Silva L, Lozano-Sánchez J, Emanuelli T. Micronization increases the bioaccessibility of polyphenols from granulometrically separated olive pomace fractions. Food Chem 2020; 344:128689. [PMID: 33277120 DOI: 10.1016/j.foodchem.2020.128689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
The effect of micronization of granulometrically fractionated olive pomace (OP) on the bioaccessibility of polyphenols and the antioxidant capacity was investigated during sequential in vitro static digestion. Crude OP was fractionated in a 2-mm sieve (F1: > 2 mm; F2: < 2 mm) and then micronized (300 r min-1, 5 h) generating F1AG (17.8 μm) and F2AG (15.6 μm). Micronization increased the release of hydroxytyrosol, oleuropein, caffeic acid, and decarboxymethyl oleuropein aglycone (3,4-DHPEA-EDA) in the salivary and gastric phase, beyond luteolin in the gastric phase. Micronization also increased the intestinal bioaccessibility of hydroxytyrosol, 3,4-DHPEA-EDA, oleuropein, luteolin, and apigenin; it was more effective for F2AG than F1AG. Micronized samples increased antioxidant capacity in the gastric phase. F2AG exhibited the highest antioxidant capacity in the insoluble intestinal fraction. Thus, micronization can be further exploited to improve the nutraceutical properties of OP by increasing the bioaccessibility and antioxidant capacity of phenolic compounds.
Collapse
Affiliation(s)
- Caroline Sefrin Speroni
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Daniela Rigo Guerra
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Ana Betine Beutinger Bender
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Jessica Stiebe
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Cristiano Augusto Ballus
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Leila Picolli da Silva
- Department of Animal Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Jesús Lozano-Sánchez
- Department of Nutrition and Bromatology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), Bioregion Building, PTS Granada, Avda. del Conocimiento s/n, 18016 Granada, Spain
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
16
|
Contreras MDM, Romero I, Moya M, Castro E. Olive-derived biomass as a renewable source of value-added products. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Cavallo P, Dini I, Sepe I, Galasso G, Fedele FL, Sicari A, Bolletti Censi S, Gaspari A, Ritieni A, Lorito M, Vinale F. An Innovative Olive Pâté with Nutraceutical Properties. Antioxidants (Basel) 2020; 9:antiox9070581. [PMID: 32635186 PMCID: PMC7401864 DOI: 10.3390/antiox9070581] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
Food plays a central role in health, especially through consumption of plant-derived foods. Functional foods, supplements, and nutraceuticals are increasingly entering the market to respond to consumer demand for healthy products. They are foods, supplements, and ingredients which offer health benefits beyond the standard nutritional value. Some benefits are associated with phenolic compounds and phytochemicals with antioxidant properties. An olive pâté (OP) was added with antioxidants derived from olive mill wastewater (OMWW) to obtain a functional product rich in phenolic compounds. The olive pâté is produced from the ground olive pericarp, which shows an excellent natural antioxidant content. The OMWW is a waste product from oil processing, which is also rich in phenolic compounds. The result was a product rich in trans-resveratrol, OH tyrosol, and tyrosol in concentrations such as satisfying the European community’s claims regarding the possible antioxidant action on plasma lipids with excellent shelf-life stability. The total phenolic content was assayed by a colorimetric method, the antioxidant activity by the ABTS [(2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)] test, the phenolic profile by Q Exactive Orbitrap LC-MS/MS. The shelf-life stability was confirmed by yeast, molds, and total microbial count, pH, and water activity determinations, and the best pasteurization parameters were determined. The palatability was judged as excellent.
Collapse
Affiliation(s)
- Pierpaolo Cavallo
- Dipartimento di Fisica, Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
- ISC-CNR, Institute for Complex Systems, Via dei Taurini, 19, 00185 Roma, Italy
- Correspondence: (P.C.); (I.D.)
| | - Irene Dini
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.G.); (A.R.)
- Correspondence: (P.C.); (I.D.)
| | - Immacolata Sepe
- Diagnostica Cavallo—Centro Ricerca Albo MIUR, 84123 Salerno, Italy;
| | - Gennaro Galasso
- Dipartimento di Medicina e Farmacia, Università di Salerno, 84081 Baronissi, Salerno, Italy;
| | | | - Andrea Sicari
- Linfa Scarl, University Spin Off, 80146 Napoli, Italy; (F.L.F.); (A.S.); (S.B.C.)
| | | | - Anna Gaspari
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.G.); (A.R.)
| | - Alberto Ritieni
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.G.); (A.R.)
- UNESCO Chair of Health Education and Sustainable Development, University of Naples, 80131 Napoli, Italy
| | - Matteo Lorito
- Dipartimento di Agraria, Università di Napoli “Federico II”, 80055 Portici (NA), Italy;
| | - Francesco Vinale
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli “Federico II”, 80137 Napoli, Italy;
| |
Collapse
|
18
|
Cecchi L, Guerrini L, Bellumori M, Balli D, Xie P, Parenti A, Mulinacci N. Optimization of the production process of dried unripe olives (Olea europaea L.) as a nutraceutical ingredient naturally rich in phenolic compounds. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Characterization of phenolic and triacylglycerol compounds in the olive oil by-product pâté and assay of its antioxidant and enzyme inhibition activity. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Cavallo P, Vinale F, Sepe I, Galasso G, Fedele FL, Sicari A, Zito L, Lorito M. Reinforced Olive Pâté as a Source of Antioxidants with Positive Effects on Young Smokers. ACTA ACUST UNITED AC 2019; 55:medicina55100680. [PMID: 31600985 PMCID: PMC6843643 DOI: 10.3390/medicina55100680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Background and objectives: Olive pâté (OP) is an olive-derived product with potentially beneficial effects on human health due to the presence of natural antioxidants. The present dietary supplementation study aimed to evaluate the effects on blood antioxidant levels of an olive pâté reinforced with natural antioxidants (ROP) recovered from olive mill waste. Materials and methods: Ninety-eight healthy volunteers (M = 54, 55%, age 18–25) were divided into two groups: A (n = 49), practicing three or more days of physical activity a week, and B (n = 49), practicing less than two. Each group was split into two subgroups, receiving dietary supplementation with OP or ROP. The status of smoker was also recorded, and a biological antioxidant potential (BAP) test was performed on each subject. Results: The BAP values increased with both OP (n = 30) and ROP (n = 68) but ROP supplementation showed higher increments (736.9 μmol/L) than OP (339.6). The increment was significantly higher for smokers (n = 15), 1122.9 vs. non-smokers (n = 53), 635.7, with values in percent of baseline, respectively, 34.6% and 16.2% (P < 0.01). Conclusions: The ROP nutritional supplementation appears useful to increase antioxidant activity, with better effect in smokers; further studies should confirm the finding and investigate its biological bases.
Collapse
Affiliation(s)
- Pierpaolo Cavallo
- Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy.
- ISC-CNR, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Francesco Vinale
- Università di Napoli "Federico II", Via Università, 96, 80055 Portici (NA), Italy.
| | - Immacolata Sepe
- Diagnostica Cavallo-Centro Ricerca, Via C. Calo', 2, 84123 Salerno, Italy.
| | - Gennaro Galasso
- Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy.
| | | | - Andrea Sicari
- Linfa Scarl, Via Ferrante Imparato 27/29, 80100 Napoli, Italy.
| | - Loredana Zito
- Santa Rita Srl, Via Zona Industriale, 89900 Vibo Valentia, Italy.
| | - Matteo Lorito
- Università di Napoli "Federico II", Via Università, 96, 80055 Portici (NA), Italy.
| |
Collapse
|
21
|
Cecchi L, Schuster N, Flynn D, Bechtel R, Bellumori M, Innocenti M, Mulinacci N, Guinard JX. Sensory Profiling and Consumer Acceptance of Pasta, Bread, and Granola Bar Fortified with Dried Olive Pomace (Pâté): A Byproduct from Virgin Olive Oil Production. J Food Sci 2019; 84:2995-3008. [PMID: 31546280 DOI: 10.1111/1750-3841.14800] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 01/09/2023]
Abstract
An olive pomace (pâté) obtained from virgin olive oil production, was used for the fortification of pasta, bread, and granola bar. For each food, a control (without pâté) and a fortified sample (with pâté, 7% in pasta and 5% in bread and granola bar) were manufactured. Descriptive analysis showed that pâté strongly affected the appearance of pasta and bread and increased the bitterness of bread and granola bar but not pasta. Granola bar was less affected in general, likely because of its higher ingredient complexity. In a central location test with 175 Californian consumers, both the control and the fortified samples of all three foods were well accepted overall, with only the mean liking of the appearance of the fortified pasta falling below the "neither like nor dislike" mark. Approximately 30% of consumers preferred the fortified sample over the control for each food and 50% were willing to pay more for the fortified products. The percentage of phenols from pâté recovered in the prepared samples was such that 63 g of pasta, 18 g of bread, and 12 g of granola bar would be sufficient to meet the EFSA health claim for olive oil phenols. This study demonstrates that pâté can be used for fortification of foods for human consumption, thus adding potential economic value to the virgin olive oil production chain and allowing for a higher daily intake of phenols from Olea europaea L., whose beneficial health properties are well recognized. PRACTICAL APPLICATION: The dried olive oil pomace (pâté) that we developed and tested in this research can be used to fortify pasta, bread, and granola bars with health-beneficial phenols with only slight alterations of their sensory profiles and slight reduction in consumer acceptance. Virgin olive oil producers can use this byproduct and gain further economic value from olive oil production.
Collapse
Affiliation(s)
- Lorenzo Cecchi
- Dept. of NEUROFARBA, Univ. degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Noah Schuster
- Dept. of Food Science and Technology, Univ. of California, Davis, CA, USA
| | - Dan Flynn
- Dept. of Food Science and Technology, Univ. of California, Davis, CA, USA
| | - Rose Bechtel
- Dept. of Food Science and Technology, Univ. of California, Davis, CA, USA
| | - Maria Bellumori
- Dept. of NEUROFARBA, Univ. degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Marzia Innocenti
- Dept. of NEUROFARBA, Univ. degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Nadia Mulinacci
- Dept. of NEUROFARBA, Univ. degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| | | |
Collapse
|
22
|
Tufariello M, Durante M, Veneziani G, Taticchi A, Servili M, Bleve G, Mita G. Patè Olive Cake: Possible Exploitation of a By-Product for Food Applications. Front Nutr 2019; 6:3. [PMID: 30805344 PMCID: PMC6371699 DOI: 10.3389/fnut.2019.00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Patè Olive Cake (POC) is a new by-product derived from recently introduced new decanters in the olive oil production process. POC, is essentially composed of water, olive pulp and olive skin, and is rich in several valuable bioactive compounds. Moreover, it still contains about 8-12% residual olive oil. We characterized the main bioactive compounds in POC from black olives (cv. Leccino and Cellina di Nardò) and also verified the biotechnological aptitude of selected yeast and lactic acid bacteria from different sources, in transforming POC into a new fermented product. The strategy of sequential inoculum of Saccharomyces cerevisiae and Leuconostoc mesenteroides was successful in driving the fermentation process. In fermented POC total levels of phenols were slightly reduced when compared with a non-fermented sample nevertheless the content of the antioxidant hydroxytyrosol showed increased results. The total levels of triterpenic acids, carotenoids, and tocochromanols results were almost unchanged among the samples. Sensory notes were significantly improved after fermentation due to the increase of superior alcohols, esters, and acids. The results reported indicate a possible valorisation of this by-product for the preparation of food products enriched in valuable healthy compounds.
Collapse
Affiliation(s)
- Maria Tufariello
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Miriana Durante
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Gianluca Veneziani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Agnese Taticchi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Maurizio Servili
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Gianluca Bleve
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Giovanni Mita
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| |
Collapse
|
23
|
Zuin VG, Ramin LZ. Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approaches. Top Curr Chem (Cham) 2018; 376:3. [PMID: 29344754 PMCID: PMC5772139 DOI: 10.1007/s41061-017-0182-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/26/2017] [Indexed: 02/07/2023]
Abstract
New generations of biorefinery combine innovative biomass waste resources from different origins, chemical extraction and/or synthesis of biomaterials, biofuels, and bioenergy via green and sustainable processes. From the very beginning, identifying and evaluating all potentially high value-added chemicals that could be removed from available renewable feedstocks requires robust, efficient, selective, reproducible, and benign analytical approaches. With this in mind, green and sustainable separation of natural products from agro-industrial waste is clearly attractive considering both socio-environmental and economic aspects. In this paper, the concepts of green and sustainable separation of natural products will be discussed, highlighting the main studies conducted on this topic over the last 10 years. The principal analytical techniques (such as solvent, microwave, ultrasound, and supercritical treatments), by-products (e.g., citrus, coffee, corn, and sugarcane waste) and target compounds (polyphenols, proteins, essential oils, etc.) will be presented, including the emerging green and sustainable separation approaches towards bioeconomy and circular economy contexts.
Collapse
Affiliation(s)
- Vânia G Zuin
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, 13565-905, Brazil.
- Green Chemistry Centre of Excellence, University of York, North Yorkshire, YO10 5DD, UK.
| | - Luize Z Ramin
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, 13565-905, Brazil
| |
Collapse
|
24
|
Cecchi L, Bellumori M, Cipriani C, Mocali A, Innocenti M, Mulinacci N, Giovannelli L. A two-phase olive mill by-product (pâté) as a convenient source of phenolic compounds: Content, stability, and antiaging properties in cultured human fibroblasts. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
25
|
Oxidative Status and Presence of Bioactive Compounds in Meat from Chickens Fed Polyphenols Extracted from Olive Oil Industry Waste. SUSTAINABILITY 2017. [DOI: 10.3390/su9091566] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Kumar K, Yadav AN, Kumar V, Vyas P, Dhaliwal HS. Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0148-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|