1
|
Peng H, Shahidi F. Metabolic, toxicological, chemical, and commercial perspectives on esterification of dietary polyphenols: a review. Crit Rev Food Sci Nutr 2024; 64:7465-7504. [PMID: 36908213 DOI: 10.1080/10408398.2023.2185589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Molecular modifications have been practiced for more than a century and nowadays they are widely applied in food, pharmaceutical, or other industries to manipulate the physicochemical, bioactivity, metabolic/catabolic, and pharmacokinetic properties. Among various structural modifications, the esterification/O-acylation has been well-established in altering lipophilicity and bioactivity of parent bioactive compounds, especially natural polyphenolics, while maintaining their high biocompatibility. Meanwhile, various classic chemical and enzymatic protocols and other recently emerged cell factory technology are being employed as viable esterification strategies. In this contribution, the main motivations of phenolic esterification, including the tendency to replace synthetic alkyl phenolics with safer alternatives in the food industry to improve the bioavailability of phenolics as dietary supplements/pharmaceuticals, are discussed. In addition, the toxicity, metabolism, and commercial application of synthetic and natural phenolics are briefly introduced. Under these contexts, the mechanisms and reaction features of several most prevalent chemical and enzymatic esterification pathways are demonstrated. In addition, insights into the studies of esterification modification of natural phenolic compounds and specific pros/cons of various reaction systems with regard to their practical application are provided.
Collapse
Affiliation(s)
- Han Peng
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
2
|
Singh G, Kumar A, Verma MK, Gupta P, Katoch M. Secondary metabolites produced by Macrophomina phaseolina, a fungal root endophyte of Brugmansia aurea, using classical and epigenetic manipulation approach. Folia Microbiol (Praha) 2022; 67:793-799. [PMID: 35622275 DOI: 10.1007/s12223-022-00976-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/25/2022] [Indexed: 01/18/2023]
Abstract
Endophytic fungi are rich sources of structurally complex chemical scaffolds with interesting biological activities. However, their metabolome is still unknown, making them appealing for novel compound discovery. To maximize the number of secondary metabolites produced from a single microbial source, we used the "OSMAC (one strain-many compounds) approach." In potato dextrose medium, M. phaseolina produced phomeolic acid (1), ergosterol peroxide (2), and a volatile compound 1,4-benzene-diol. Incorporating an epigenetic modifier, sodium valproate, affected the metabolite profile of the fungus. It produced 3-acetyl-3-methyl dihydro-furan-2(3H)-one (3) and methyl-2-(methyl-thio)-butyrate (4), plus volatile chemicals: butylated hydroxy toluene (BHT), di-methyl-formamide, 3-amino-1-propanol, and 1,4-benzenediol, 2-amino-1-(O-methoxyphenyl) propane. The structure of compounds 1-4 was established with the help of spectroscopic data. This study revealed first-time compounds 1-4 in the fungus M. phaseolina using a classical and epigenetic manipulation approach.
Collapse
Affiliation(s)
- Gurpreet Singh
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, 110025, India
| | - Amit Kumar
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - M K Verma
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prasoon Gupta
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, 110025, India
| | - Meenu Katoch
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, 110025, India.
| |
Collapse
|
3
|
Tao J, Liu L, Ma Q, Ma KY, Chen ZY, Ye F, Lei L, Zhao G. Effect of γ-oryzanol on oxygen consumption and fatty acids changes of canola oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|