1
|
Ayala-Fuentes JC, Soleimani M, Magaña JJ, Gonzalez-Meljem JM, Chavez-Santoscoy RA. Novel Hybrid Inulin-Soy Protein Nanoparticles Simultaneously Loaded with (-)-Epicatechin and Quercetin and Their In Vitro Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101615. [PMID: 37242034 DOI: 10.3390/nano13101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
(-)-Epicatechin and quercetin have attracted considerable attention for their potential therapeutic application in non-communicable chronic diseases. A novel hybrid inulin-soy protein nanoparticle formulation was simultaneously loaded with (-)-epicatechin and quercetin (NEQs) to improve the bioavailability of these flavonoids in the human body, and NEQs were synthesized by spray drying. After process optimization, the physicochemical and functional properties of NEQs were characterized including in vitro release, in vitro gastrointestinal digestion, and cell viability assays. Results showed that NEQs are an average size of 280.17 ± 13.42 nm and have a zeta potential of -18.267 ± 0.83 mV in the organic phase. Encapsulation efficiency of (-)-epicatechin and quercetin reached 97.04 ± 0.01 and 92.05 ± 1.95%, respectively. A 3.5% soy protein content conferred controlled release characteristics to the delivery system. Furthermore, NEQs presented inhibitory effects in Caco-2, but not in HepG-2 and HDFa cell lines. These results contribute to the design and fabrication of inulin-soy protein nanoparticles for improving the bioavailability of multiple bioactive compounds with beneficial properties.
Collapse
Affiliation(s)
- Jocelyn C Ayala-Fuentes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Maryam Soleimani
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Jonathan Javier Magaña
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Mexico City 14380, Mexico
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | | | - Rocio Alejandra Chavez-Santoscoy
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| |
Collapse
|
2
|
Morelo G, Giménez B, Márquez-Ruiz G, Holgado F, Romero-Hasler P, Soto-Bustamante E, Robert P. Influence of the Physical State of Spray-Dried Flavonoid-Inulin Microparticles on Oxidative Stability of Lipid Matrices. Antioxidants (Basel) 2019; 8:antiox8110520. [PMID: 31671558 PMCID: PMC6912732 DOI: 10.3390/antiox8110520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
The effect of the physical state of flavonoid-inulin microparticles (semi-crystalline/amorphous) on the oxidative stability of lipid matrices was studied. Epicatechin (E) and quercetin (Q) microparticles with inulin were formulated at two infeed temperatures (15 °C and 90 °C) by spray drying. X-ray diffraction analyses showed that flavonoid-inulin microparticles obtained at feed temperature of 15 °C were semi-crystalline (E-In-15, 61.2% and Q-In-15, 60%), whereas those at 90 °C were amorphous (Q-In-90, 1.73 and Q-In-90 2.30%). Semi-crystalline state of flavonoid-inulin microparticles enhanced the EE (68.8 and 67.8% for E and Q, respectively) compared to amorphous state (41.6 and 51.1% for E and Q, respectively). However, amorphous Q-microparticles showed the highest antioxidant activity both in methyl linoleate and sunflower oil, increasing the induction period and decreasing the polar compounds and polymer triglyceride formation during long-term oxidation study. Therefore, the physical state of spray-dried flavonoid-inulin microparticles may determine their antioxidant activity in lipid matrices.
Collapse
Affiliation(s)
- Guibeth Morelo
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Begoña Giménez
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Av. Ecuador 3769, Estación Central, Santiago 9170124, Chile.
| | - Gloria Márquez-Ruiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain.
| | - Francisca Holgado
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain.
| | - Patricio Romero-Hasler
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Eduardo Soto-Bustamante
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| | - Paz Robert
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| |
Collapse
|
3
|
Effect of spray-drying with organic solvents on the encapsulation, release and stability of fish oil. Food Chem 2018; 263:283-291. [PMID: 29784318 DOI: 10.1016/j.foodchem.2018.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/15/2018] [Accepted: 05/03/2018] [Indexed: 11/23/2022]
Abstract
Fish-oil (FO) was encapsulated with hydroxypropylcelullose (HPC) by conventional spray-drying with water (FO-water) and solvent spray-drying with ethanol (FO-EtOH), methanol (FO-MeOH) and acetone (FO-Acet) in order to study the effect of the solvent on the encapsulation efficiency (EE), microparticle properties and stability of FO during storage at 40 °C. Results showed that FO-Acet presented the highest EE of FO (92.0%), followed by FO-EtOH (80.4%), FO-MeOH (75.0%) and FO-water (71.1%). A decrease of the dielectric constant increased the EE of FO, promoting triglyceride-polymer interactions instead of oil-in-water emulsion retention. FO release profile in aqueous model was similar for all FO-microparticles, releasing only the surface FO, according to Higuchi model. Oxidative stability of FO significantly improved by spray-drying with MeOH, both in surface and encapsulated oil fractions. In conclusion, encapsulation of FO by solvent spray-drying can be proposed as an alternative technology for encapsulation of hydrophobic molecules.
Collapse
|
4
|
Kamal‐Eldin A, Ghnimi S. Design of flavonoid microparticles with channel forming properties to improve oxidative stability of sunflower oil. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Afaf Kamal‐Eldin
- Department of Food ScienceUnited Arab Emirates UniversityAlainUAE
| | - Sami Ghnimi
- Department of Food ScienceUnited Arab Emirates UniversityAlainUAE
| |
Collapse
|