1
|
Jašek V, Fučík J, Krhut J, Mravcova L, Figalla S, Přikryl R. A Study of Isosorbide Synthesis from Sorbitol for Material Applications Using Isosorbide Dimethacrylate for Enhancement of Bio-Based Resins. Polymers (Basel) 2023; 15:3640. [PMID: 37688269 PMCID: PMC10490356 DOI: 10.3390/polym15173640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Bio-based cross-linkers can fulfill the role of enhancing additives in bio-sourced curable materials that do not compare with artificial resin precursors. Isosorbide dimethacrylate (ISDMMA) synthesized from isosorbide (ISD) can serve as a cross-linker from renewable sources. Isosorbide is a bicyclic carbon molecule produced by the reaction modification of sorbitol and the optimal conditions of this reaction were studied in this work. The reaction temperature of 130 °C and 1% w/w amount of para-toluenesulfonic acid (p-TSA) were determined as optimal and resulted in a yield of 81.9%. Isosorbide dimethacrylate was synthesized via nucleophilic substitution with methacrylic anhydride (MAA) with the conversion of 94.1% of anhydride. Formed ISD and ISDMMA were characterized via multiple verification methods (FT-IR, MS, 1H NMR, and XRD). Differential scanning calorimetry (DSC) proved the curability of ISDMMA (activation energy Ea of 146.2 kJ/mol) and the heat-resistant index of ISDMMA (Ts reaching value of 168.9) was determined using thermogravimetric analysis (TGA). Characterized ISDMMA was added to the precursor mixture containing methacrylated alkyl 3-hydroxybutyrates (methyl ester M3HBMMA and ethyl ester E3HBMMA), and the mixtures were cured via photo-initiation. The amount of ISDMMA cross-linker increased all measured parameters obtained via dynamic mechanical analysis (DMA), such as storage modulus (E') and glass transition temperature (Tg), and the calculated cross-linking densities (νe). Therefore, the enhancement influence of bio-based ISDMMA on resins from renewable sources was confirmed.
Collapse
Affiliation(s)
- Vojtěch Jašek
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic; (S.F.); (R.P.)
| | - Jan Fučík
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic; (J.F.); (L.M.)
| | - Jiří Krhut
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic; (S.F.); (R.P.)
| | - Ludmila Mravcova
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic; (J.F.); (L.M.)
| | - Silvestr Figalla
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic; (S.F.); (R.P.)
| | - Radek Přikryl
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic; (S.F.); (R.P.)
| |
Collapse
|
2
|
Bergoglio M, Reisinger D, Schlögl S, Griesser T, Sangermano M. Sustainable Bio-Based UV-Cured Epoxy Vitrimer from Castor Oil. Polymers (Basel) 2023; 15:1024. [PMID: 36850307 PMCID: PMC9963144 DOI: 10.3390/polym15041024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Vitrimers brought new properties in thermosets by allowing their reshaping, self-healing, reprocessing, and network rearrangement without changing structural integrity. In this study, epoxidized castor oil (ECO) was successfully used for the straightforward synthesis of a bio-based solvent-free vitrimer. The synthesis was based on a UV-curing process, which proceeded at low temperatures in the absence of any solvents, and within a short time. Real time Fourier-transformed infrared spectroscopy and photo-DSC were exploited to monitor the cationic photocurable process. The UV-cured polymer networks were able to efficiently undergo thermo-activated bond exchange reactions due to the presence of dibutyl phosphate as a transesterification catalyst. Mechanical properties, thermal resistance, glass transition temperature, and stress relaxation were investigated as a function of the amount of transesterification catalyst. Mechanical properties were determined by both DMTA and tensile tests. Glass transition temperature (Tg) was evaluated by DMTA. Thermal stability was assessed by thermogravimetric analysis, whilst vitrimeric properties were studied by stress relaxation experiments. Overall, the ECO-based vitrimer showed high thermal resistance (up to 200 °C) and good mechanical properties (elastic modulus of about 10 MPa) and can therefore be considered as a promising starting point for obtaining more sustainable vitrimers.
Collapse
Affiliation(s)
- Matteo Bergoglio
- Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - David Reisinger
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| | - Thomas Griesser
- Institute of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto Glöckel-Straße 2, 8700 Leoben, Austria
| | - Marco Sangermano
- Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
3
|
Phosphate-based covalent adaptable networks with recyclability and flame retardancy from bioresources. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Alarcon RT, Lamb KJ, Bannach G, North M. Opportunities for the Use of Brazilian Biomass to Produce Renewable Chemicals and Materials. CHEMSUSCHEM 2021; 14:169-188. [PMID: 32975380 DOI: 10.1002/cssc.202001726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/24/2020] [Indexed: 06/11/2023]
Abstract
This Review highlights the principal crops of Brazil and how their harvest waste can be used in the chemicals and materials industries. The Review covers various plants; with grains, fruits, trees and nuts all being discussed. Native and adopted plants are included and studies on using these plants as a source of chemicals and materials for industrial applications, polymer synthesis, medicinal use and in chemical research are discussed. The main aim of the Review is to highlight the principal Brazilian agricultural resources; such as sugarcane, oranges and soybean, as well as secondary resources, such as andiroba brazil nut, buriti and others, which should be explored further for scientific and technological applications. Furthermore, vegetable oils, carbohydrates (starch, cellulose, hemicellulose, lignocellulose and pectin), flavones and essential oils are described as well as their potential applications.
Collapse
Affiliation(s)
- Rafael T Alarcon
- School of Sciences, Department of Chemistry, UNESP- São Paulo State University, Bauru, 17033-260, SP, Brazil
| | - Katie J Lamb
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | - Gilbert Bannach
- School of Sciences, Department of Chemistry, UNESP- São Paulo State University, Bauru, 17033-260, SP, Brazil
| | - Michael North
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
5
|
Chakraborty I, Chatterjee K. Polymers and Composites Derived from Castor Oil as Sustainable Materials and Degradable Biomaterials: Current Status and Emerging Trends. Biomacromolecules 2020; 21:4639-4662. [PMID: 33222440 DOI: 10.1021/acs.biomac.0c01291] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent years have seen rapid growth in utilizing vegetable oils to derive a wide variety of polymers to replace petroleum-based polymers for minimizing environmental impact. Nonedible castor oil (CO) can be extracted from castor plants that grow easily, even in an arid land. CO is a promising source for developing several polymers such as polyurethanes, polyesters, polyamides, and epoxy-polymers. Several synthesis routes have been developed, and distinct properties of polymers have been studied for industrial applications. Furthermore, fillers and fibers, including nanomaterials, have been incorporated in these polymers for enhancing their physical, thermal, and mechanical properties. This review highlights the development of CO-based polymers and their composites with attractive properties for industrial and biomedical applications. Recent advancements in CO-based polymers and their composites are presented along with a discussion on future opportunities for further developments in diverse applications.
Collapse
Affiliation(s)
- Indranil Chakraborty
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| |
Collapse
|
6
|
Hernández E, Mosiewicki MA, Marcovich NE. Bio‐Based Polymers Obtained from Modified Fatty Acids and Soybean Oil with Tailorable Physical and Mechanical Performance. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Emanuel Hernández
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Mar del Plata B7608FDQ Argentina
| | - Mirna. A. Mosiewicki
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Mar del Plata B7608FDQ Argentina
| | - Norma. E. Marcovich
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Mar del Plata B7608FDQ Argentina
- Departamento de Ingeniería Química y en Alimentos – Facultad de Ingeniería Universidad Nacional de Mar del Plata (UNMdP) Mar del Plata B7608FDQ Argentina
| |
Collapse
|
7
|
Capiel G, Hernández E, Marcovich NE, Mosiewicki MA. Stress relaxation behavior of weldable crosslinked polymers based on methacrylated oleic and lauric acids. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
The Effects of Epoxidized Acrylated Castor Oil (EACO) on Soft Poly (vinyl chloride) Films as a Main Plasticizer. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2019. [DOI: 10.2478/pjct-2018-0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
In this work, an environmentally friendly type plasticizer was introduced. The synthesis consisted of two steps. In the first step, castor oil (CO) was acrylated and then the acrylated castor oil (ACO) was epoxidized with the presence of formic acid and hydrogen peroxide in the second step. The epoxidized acrylated castor oil (EACO) was characterized by FTIR and 1H-NMR techniques. The EACO was used as a main plasticizer to obtain plasticized PVC materials and compared with DOP. The results showed that EACO improved polyvinyl-chloride (PVC) plasticization performance and reduced Tg from 81.06°C to 1.40°C. Plasticized PVC materials with EACO showed similar mechanical properties and better thermal stability than DOP. EACO had better volatility stabilities, migration and solvent extraction in PVC than DOP. EACO can be used to replace DOP to prepare soft films.
Collapse
|
9
|
Sahoo SK, Khandelwal V, Manik G. Renewable Approach To Synthesize Highly Toughened Bioepoxy from Castor Oil Derivative–Epoxy Methyl Ricinoleate and Cured with Biorenewable Phenalkamine. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sushanta K. Sahoo
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, Uttar Pradesh, India
| | - Vinay Khandelwal
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, Uttar Pradesh, India
| | - Gaurav Manik
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, Uttar Pradesh, India
| |
Collapse
|