1
|
Coradello G, Setti C, Donno R, Ghibaudi M, Catalano F, Tirelli N. A Quantitative Re-Assessment of Microencapsulation in (Pre-Treated) Yeast. Molecules 2024; 29:539. [PMID: 38276617 PMCID: PMC10818300 DOI: 10.3390/molecules29020539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Most hydrophobes easily diffuse into yeast cells, where they experience reduced evaporation and protection from oxidation, thus allowing inherently biocompatible encapsulation processes. Despite a long-standing industrial interest, the effect of parameters such as how is yeast pre-treated (extraction with ethanol, plasmolysis with hypertonic NaCl, depletion to cell walls), the polarity of the hydrophobes and the process conditions are still not fully understood. Here, we have developed thorough analytical protocols to assess how the effects of the above on S. cerevisiae's morphology, permeability, and encapsulation efficiency, using three differently polar hydrophobes (linalool, 1,6-dihydrocarvone, limonene) and three separate processes (hydrophobes as pure 'oils', water dispersions, or acetone solutions). The harsher the pre-treatment (depleted > plasmolyzed/extracted > untreated cells), the easier the diffusion into yeast became, and the lower both encapsulation efficiency and protection from evaporation, possibly due to denaturation/removal of lipid-associated (membrane) proteins. More hydrophobic terpenes performed worst in encapsulation as pure 'oils' or in water dispersion, but much less of a difference existed in acetone. This indicates the specific advantage of solvents/dispersants for 'difficult' compounds, which was confirmed by principal component analysis; furthering this concept, we have used combinations of hydrophobes (e.g., linalool and α-tocopherol), with one acting as solvent/enhancer for the other. Our results thus indicate advantages in using untreated yeast and-if necessary-processes based on solvents/secondary hydrophobes.
Collapse
Affiliation(s)
- Giulia Coradello
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (G.C.); (C.S.); (M.G.)
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genova, Italy
| | - Chiara Setti
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (G.C.); (C.S.); (M.G.)
| | - Roberto Donno
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (G.C.); (C.S.); (M.G.)
| | - Matilde Ghibaudi
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (G.C.); (C.S.); (M.G.)
| | - Federico Catalano
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy;
| | - Nicola Tirelli
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (G.C.); (C.S.); (M.G.)
| |
Collapse
|
2
|
Yan CX, Zhang Y, Yang WQ, Ma W, Sun XM, Huang H. Universal and unique strategies for the production of polyunsaturated fatty acids in industrial oleaginous microorganisms. Biotechnol Adv 2024; 70:108298. [PMID: 38048920 DOI: 10.1016/j.biotechadv.2023.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA), are beneficial for reducing blood cholesterol and enhancing memory. Traditional PUFA production relies on extraction from plants and animals, which is unsustainable. Thus, using microorganisms as lipid-producing factories holds promise as an alternative way for PUFA production. Several oleaginous microorganisms have been successfully industrialized to date. These can be divided into universal and specialized hosts according to the products range of biosynthesis. The Yarrowia lipolytica is universal oleaginous host that has been engineered to produce a variety of fatty acids, such as γ-linolenic acid (GLA), EPA, ARA and so on. By contrast, the specialized host are used to produce only certain fatty acids, such as ARA in Mortierella alpina, EPA in Nannochloropsis, and DHA in Thraustochytrids. The metabolic engineering and fermentation strategies for improving PUFA production in universal and specialized hosts are different, which is the subject of this review. In addition, the widely applicable strategies for microbial lipid production that are not specific to individual hosts were also reviewed.
Collapse
Affiliation(s)
- Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wen-Qian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Morales-Palomo S, Liras M, González-Fernández C, Tomás-Pejó E. Key role of fluorescence quantum yield in Nile Red staining method for determining intracellular lipids in yeast strains. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:37. [PMID: 35440008 PMCID: PMC9019942 DOI: 10.1186/s13068-022-02135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/03/2022] [Indexed: 11/19/2022]
Abstract
Background Microbial lipids are found to be an interesting green alternative to expand available oil sources for the chemical industry. Yeasts are considered a promising platform for sustainable lipid production. Remarkably, some oleaginous yeasts have even shown the ability to grow and accumulate lipids using unusual carbon sources derived from organic wastes, such as volatile fatty acids. Recent research efforts have been focused on developing rapid and accurate fluorometric methods for the quantification of intracellular yeast lipids. Nevertheless, the current methods are often tedious and/or exhibit low reproducibility. Results This work evaluated the reliability of different fluorescence measurements (fluorescence intensity, total area and fluorescence quantum yield) using Nile Red as lipid dye in two yeast strains (Yarrowia lipolytica ACA-DC 50109 and Cutaneotrichosporon curvatum NRRL-Y-1511). Different standard curves were obtained for each yeast specie. Fermentation tests were carried with 6-month difference to evaluate the effect of the fluorometer lamp lifetime on lipid quantification. Conclusions Fluorescence quantum yield presented the most consistent measurements along time and the closer estimations when compared with lipids obtained by conventional methods (extraction and gravimetrical determination). The need of using fluorescence quantum yield to estimate intracellular lipids, which is not the common trend in studies focused on microbial lipid production, was stressed. The information here provided will surely enable more accurate results comparison. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02135-9.
Collapse
|
4
|
Kim DI, Kim HJ, Park JH, Kim KH, Kang H, Kim J, Lu P, Ahn H, Hyun DC. Magnetic cluster-encapsulated polymer dimers with controlled surface property. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Hicks RH, Moreno-Beltrán M, Gore-Lloyd D, Chuck CJ, Henk DA. The Oleaginous Yeast Metschnikowia pulcherrima Displays Killer Activity against Avian-Derived Pathogenic Bacteria. BIOLOGY 2021; 10:biology10121227. [PMID: 34943142 PMCID: PMC8698481 DOI: 10.3390/biology10121227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Pathogenic bacteria in poultry and the widespread use of antibiotics to manage them are costly in terms of production, environmental risk and human health. Probiotic and other low-cost, non-antibiotic treatments offer attractive alternatives to antibiotic applications, but relatively few of these options exist. In this research, we investigated the potential of an otherwise-useful industrial yeast, Metschnikowia pulcherrima, for the active suppression of poultry pathogenic bacteria. We tested multiple strains of yeast against several important bacterial pathogens and found that the more inhibitory strains of yeast supressed bacterial growth and actively killed the most recalcitrant bacteria. Less aggressive yeast strains could increase the growth of some bacterial strains in some environments. The yeast produced novel molecules in response to the presence of the bacteria and we identified several potential mechanisms by which the yeast inhibited or killed bacteria. Together, these results point towards a useful application of a novel yeast for enhanced, antibiotic-free pathogen control. Abstract Metschnikowia pulcherrima is a non-conventional yeast with potential to be used in biotechnological processes, especially those involving low-cost feedstock exploitation and biocontrol applications. The combination of traits that supports these industrial applications in M. pulcherrima also makes it an attractive option to study in the context of livestock health. In this study, we examined the specific interactions between M. pulcherrima and multiple avian pathogenic bacteria. We tested individual bacteria–yeast interactions and bacterial combinations in both solid and liquid media and in variable nutrient environments. Across multiple isolates of M. pulcherrima, we observed different levels of antimicrobial activity, varying from supporting the growth of competing bacteria through suppression and bacterial killing, and we found that these responses varied depending on the bacterial strains and media. We identified multiple molecular routes, including proteins produced by M. pulcherrima strains, that acted to control these microbial interactions. Furthermore, protein screening revealed that M. pulcherrima strains were induced to produce proteins specifically when exposed to bacterial strains, suggesting that fine-tuned mechanisms allow M. pulcherrima to function as a potential lynchpin in a microbial community.
Collapse
Affiliation(s)
- Robert H. Hicks
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK; (R.H.H.); (M.M.-B.); (D.G.-L.)
| | - Mauro Moreno-Beltrán
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK; (R.H.H.); (M.M.-B.); (D.G.-L.)
| | - Deborah Gore-Lloyd
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK; (R.H.H.); (M.M.-B.); (D.G.-L.)
| | | | - Daniel A. Henk
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK; (R.H.H.); (M.M.-B.); (D.G.-L.)
- Correspondence:
| |
Collapse
|
6
|
Yeast Cells in Microencapsulation. General Features and Controlling Factors of the Encapsulation Process. Molecules 2021; 26:molecules26113123. [PMID: 34073703 PMCID: PMC8197184 DOI: 10.3390/molecules26113123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Besides their best-known uses in the food and fermentation industry, yeasts have also found application as microcapsules. In the encapsulation process, exogenous and most typically hydrophobic compounds diffuse and end up being passively entrapped in the cell body, and can be released upon application of appropriate stimuli. Yeast cells can be employed either living or dead, intact, permeabilized, or even emptied of all their original cytoplasmic contents. The main selling points of this set of encapsulation technologies, which to date has predominantly targeted food and-to a lesser extent-pharmaceutical applications, are the low cost, biodegradability and biocompatibility of the capsules, coupled to their sustainable origin (e.g., spent yeast from brewing). This review aims to provide a broad overview of the different kinds of yeast-based microcapsules and of the main physico-chemical characteristics that control the encapsulation process and its efficiency.
Collapse
|
7
|
Ramírez-Castrillón M, Jaramillo-Garcia VP, Lopes Barros H, Pegas Henriques JA, Stefani V, Valente P. Nile Red Incubation Time Before Reading Fluorescence Greatly Influences the Yeast Neutral Lipids Quantification. Front Microbiol 2021; 12:619313. [PMID: 33746916 PMCID: PMC7969498 DOI: 10.3389/fmicb.2021.619313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/15/2021] [Indexed: 01/22/2023] Open
Abstract
High-throughput screening methodologies to estimate lipid content in oleaginous yeasts use Nile red fluorescence in a given solvent and optimized excitation/emission wavelengths. However, Nile red fluorescence stabilization has been poorly analyzed, and high variability occurs when relative fluorescence is measured immediately or a few minutes after dye addition. The aim of this work was to analyze the fluorescence of Nile red at different incubation times using a variety of solvents and oleaginous/non-oleaginous yeast strains. We showed that fluorescence stabilization occurs between 20 and 30 min, depending on the strain and solvent. Therefore, we suggest that fluorescence measurements should be followed until stabilization, where Relative Fluorescence Units should be considered after stabilization for lipid content estimation.
Collapse
Affiliation(s)
- Mauricio Ramírez-Castrillón
- Graduate Program in Cell and Molecular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Mycology (GIM), Universidad Santiago de Cali, Santiago de Cali, Colombia
| | - Victoria P. Jaramillo-Garcia
- Graduate Program in Cell and Molecular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Helio Lopes Barros
- New Organic Materials and Forensic Chemistry Laboratory (LNMO-QF), Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - João A. Pegas Henriques
- Graduate Program in Cell and Molecular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Valter Stefani
- New Organic Materials and Forensic Chemistry Laboratory (LNMO-QF), Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patricia Valente
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Ali SS, Al-Tohamy R, Koutra E, El-Naggar AH, Kornaros M, Sun J. Valorizing lignin-like dyes and textile dyeing wastewater by a newly constructed lipid-producing and lignin modifying oleaginous yeast consortium valued for biodiesel and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123575. [PMID: 32791477 DOI: 10.1016/j.jhazmat.2020.123575] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 05/07/2023]
Abstract
Construction of a multipurpose yeast consortium suitable for lipid production, textile dye/effluent removal and lignin valorization is critical for both biorefinery and bioremediation. Therefore, a novel oleaginous consortium, designated as OYC-Y.BC.SH has been developed using three yeast cultures viz. Yarrowia sp. SSA1642, Barnettozyma californica SSA1518 and Sterigmatomyces halophilus SSA1511. The OYC-Y.BC.SH was able to grow on different carbon sources and accumulate lipids, with its highest lipid productivity (1.56 g/L/day) and lipase activity (170.3 U/mL) exhibited in xylose. The total saturated fatty acid content was 36.09 %, while the mono-unsaturated and poly-unsaturated fatty acids were 45.44 and 18.30 %, respectively, making OYC-Y.BC.SH valuable for biodiesel production. The OYC-Y.BC.SH showed its highest decolorization efficiency of Red HE3B dye (above 82 %) in presence of sorghum husk as agricultural co-substrate, suggesting its feasibility for simultaneous lignin valorization. The significant higher performance of OYC-Y.BC.SH on decolorizing the real dyeing effluent sample at pH 8.0 suggests its potential and suitability for degrading most of the wastewater textile effluents. Clearly, toxicological studies underline the additional advantage of using OYC-Y.BC.SH for bioremediation of industrial dyeing effluents in terms of decolorization and detoxification. A possible mechanism of Red HE3B biodegradation and ATP synthesis was also proposed.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Amal H El-Naggar
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
9
|
Moreno-Beltrán M, Gore-Lloyd D, Chuck C, Henk D. Variation among Metschnikowia pulcherrima Isolates for Genetic Modification and Homologous Recombination. Microorganisms 2021; 9:microorganisms9020290. [PMID: 33572537 PMCID: PMC7911581 DOI: 10.3390/microorganisms9020290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Metschnikowia pulcherrima is a non-conventional yeast with the potential to be used in biotechnological processes, especially involving low-cost feedstock exploitation. However, there are a lack of tools for researching it at a molecular level and for producing genetically modified strains. We tested the amenability to genetic modification of ten different strains, establishing a transformation protocol based on LiAc/PEG that allows us to introduce heterologous DNA. Non-homologous integration was broadly successful and homologous recombination was successful in two strains. Chemical inhibition of non-homologous end joining recombination had a modest effect on the improvement of homologous recombination rates. Removal of selective markers via flippase recombinase was successful across integrated loci except for those targeted to the native URA3 locus, suggesting that the genome sequence or structure alters the efficacy of this system.
Collapse
Affiliation(s)
- Mauro Moreno-Beltrán
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK; (M.M.-B.); (D.G.-L.)
| | - Deborah Gore-Lloyd
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK; (M.M.-B.); (D.G.-L.)
| | - Christopher Chuck
- Centre for Integrated Bioprocessing Research, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK;
| | - Daniel Henk
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK; (M.M.-B.); (D.G.-L.)
- Correspondence: ; Tel.: +44-122-538-4922
| |
Collapse
|
10
|
Abeln F, Hicks RH, Auta H, Moreno-Beltrán M, Longanesi L, Henk DA, Chuck CJ. Semi-continuous pilot-scale microbial oil production with Metschnikowia pulcherrima on starch hydrolysate. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:127. [PMID: 32695223 PMCID: PMC7367368 DOI: 10.1186/s13068-020-01756-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Heterotrophic microbial oils are potentially a more sustainable alternative to vegetable or fossil oils for food and fuel applications. However, as almost all work in the area is conducted on the laboratory scale, such studies carry limited industrial relevance and do not give a clear indication of what is required to produce an actual industrial process. Metschnikowia pulcherrima is a non-pathogenic industrially promising oleaginous yeast which exhibits numerous advantages for cost-effective lipid production, including a wide substrate uptake, antimicrobial activity and fermentation inhibitor tolerance. In this study, M. pulcherrima was fermented in stirred tank reactors of up to 350 L with 250-L working volume in both batch and semi-continuous operation to highlight the potential industrial relevance. Due to being food-grade, suitable for handling at scale and to demonstrate the oligosaccharide uptake capacity of M. pulcherrima, enzyme-hydrolysed starch in the form of glucose syrup was selected as fermentation feedstock. RESULTS In batch fermentations on the 2-L scale, a lipid concentration of 14.6 g L-1 and productivity of 0.11 g L-1 h-1 were achieved, which was confirmed at 50 L (15.8 g L-1; 0.10 g L-1 h-1). The maximum lipid production rate was 0.33 g L-1 h-1 (daily average), but the substrate uptake rate decreased with oligosaccharide chain length. To produce 1 kg of dry yeast biomass containing up to 43% (w/w) lipids, 5.2 kg of the glucose syrup was required, with a lipid yield of up to 0.21 g g-1 consumed saccharides. In semi-continuous operation, for the first time, an oleaginous yeast was cultured for over 2 months with a relatively stable lipid production rate (around 0.08 g L-1 h-1) and fatty acid profile (degree of fatty acid saturation around 27.6% w/w), and without contamination. On the 250-L scale, comparable results were observed, culminating in the generation of nearly 10 kg lipids with a lipid productivity of 0.10 g L-1 h-1. CONCLUSIONS The results establish the importance of M. pulcherrima for industrial biotechnology and its suitability to commercially produce a food-grade oil. Further improvements in the productivity are required to make M. pulcherrima lipid production industrial reality, particularly when longer-chain saccharides are involved.
Collapse
Affiliation(s)
- Felix Abeln
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, UK
- Department of Chemical Engineering, University of Bath, Bath, UK
| | - Robert H. Hicks
- Department of Biology & Biochemistry, University of Bath, Bath, UK
| | - Hadiza Auta
- Department of Chemical Engineering, University of Bath, Bath, UK
| | | | - Luca Longanesi
- Department of Chemical Engineering, University of Bath, Bath, UK
| | - Daniel A. Henk
- Department of Biology & Biochemistry, University of Bath, Bath, UK
| | | |
Collapse
|