1
|
Chauhan M, Chandra J, Gupta G, Ramaiah R, Hani U, Kesharwani P. Harnessing phytoconstituents in ethosomes: A new frontier in skin disorder management. Int J Pharm 2025; 671:125273. [PMID: 39870257 DOI: 10.1016/j.ijpharm.2025.125273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
The rising incidence of skin disorders has necessitated the exploration of innovative therapeutic modalities that harness the beneficial properties of natural compounds. Phytoconstituents, renowned for their diverse pharmacological attributes, present considerable promise in the management of various dermatological conditions. This review delineates the integration of phytoconstituents into ethosomal formulations, which are advanced lipid-based carriers specifically designed to enhance transdermal delivery. We discuss the advantages conferred by ethosomes, including their capacity to improve the stability and bioavailability of phytochemicals, facilitate deeper skin penetration, and provide controlled release profiles. Recent advancements in the formulation of ethosomes encapsulating a variety of phytoconstituents are highlighted, with a focus on their physicochemical properties, therapeutic efficacy, and safety profiles. Furthermore, the review examines the mechanisms by which ethosomes enhance the delivery of bioactive compounds to targeted skin layers, particularly in the context of treating conditions such as acne, eczema, and psoriasis. Challenges associated with formulation stability and scalability are also addressed, along with potential future research directions in this domain. By synthesizing current knowledge and identifying existing gaps, this article aims to provide a comprehensive overview of phytoconstituent-based ethosomes as a promising strategy for the development of effective and safe topical therapies for skin disorders. Ultimately, this review underscores the potential of these innovative formulations to improve patient outcomes and contribute significantly to the advancement of dermatological treatment options.
Collapse
Affiliation(s)
- Meghna Chauhan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ramasubbamma Ramaiah
- Department of Medical and Surgical Nursing, College of Nursing, Khamish Mushait, Female Wing, Mahala Road, King Khalid University, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy King Khalid University, Abha, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Li M, Xu Y, Yu Y, Li W, Chen L, Zhao B, Gao Y, Gao J, Lin H. Transdermal delivery of natural products against atopic dermatitis. Chin J Nat Med 2024; 22:1076-1088. [PMID: 39725509 DOI: 10.1016/s1875-5364(24)60681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 12/28/2024]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition. Natural products have gained traction in AD treatment due to their accessibility, low toxicity, and favorable pharmacological properties. However, their application is primarily constrained by poor solubility, instability, and limited permeability. The transdermal drug delivery system (TDDS) offers potential solutions for transdermal delivery, enhanced penetration, improved efficacy, and reduced toxicity of natural drugs, aligning with the requirements of modern AD treatment. This review examines the application of hydrogels, microneedles (MNs), liposomes, nanoemulsions, and other TDDS-carrying natural products in AD treatment, with a primary focus on their effects on penetration and accumulation in the skin. The aim is to provide valuable insights into the treatment of AD and other dermatological conditions.
Collapse
Affiliation(s)
- Minghui Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Yu
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Wanshu Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Lixia Chen
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Bo Zhao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Yuli Gao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hangjuan Lin
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China.
| |
Collapse
|
3
|
Radhakrishnan J, Kennedy BE, Noftall EB, Giacomantonio CA, Rupasinghe HPV. Recent Advances in Phytochemical-Based Topical Applications for the Management of Eczema: A Review. Int J Mol Sci 2024; 25:5375. [PMID: 38791412 PMCID: PMC11120771 DOI: 10.3390/ijms25105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Eczema (atopic dermatitis, AD) is a skin disease characterized by skin barrier dysfunction due to various factors, including genetics, immune system abnormalities, and environmental triggers. Application of emollients and topical drugs such as corticosteroids and calcineurin inhibitors form the mainstay of treatments for this challenging condition. This review aims to summarize the recent advances made in phytochemical-based topical applications to treat AD and the different carriers that are being used. In this review, the clinical efficacy of several plant extracts and bioactive phytochemical compounds in treating AD are discussed. The anti-atopic effects of the herbs are evident through improvements in the Scoring Atopic Dermatitis (SCORAD) index, reduced epidermal thickness, decreased transepidermal water loss, and alleviated itching and dryness in individuals affected by AD as well as in AD mouse models. Histopathological studies and serum analyses conducted in AD mouse models demonstrated a reduction in key inflammatory factors, including thymic stromal lymphopoietin (TSLP), serum immunoglobulin E (IgE), and interleukins (IL). Additionally, there was an observed upregulation of the filaggrin (FLG) gene, which regulates the proteins constituting the stratum corneum, the outermost layer of the epidermis. Carriers play a crucial role in topical drug applications, influencing dose delivery, retention, and bioavailability. This discussion delves into the efficacy of various nanocarriers, including liposomes, ethosomes, nanoemulsions, micelles, nanocrystals, solid-lipid nanoparticles, and polymeric nanoparticles. Consequently, the potential long-term side effects such as atrophy, eruptions, lymphoma, pain, and allergic reactions that are associated with current topical treatments, including emollients, topical corticosteroids, topical calcineurin inhibitors, and crisaborole, can potentially be mitigated through the use of phytochemical-based natural topical treatments.
Collapse
Affiliation(s)
- Janani Radhakrishnan
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Barry E. Kennedy
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2Y9, Canada
| | - Erin B. Noftall
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2Y9, Canada
| | - Carman A. Giacomantonio
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2Y9, Canada
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2Y9, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2Y9, Canada
| |
Collapse
|
4
|
Marques MP, Varela C, Mendonça L, Cabral C. Nanotechnology-Based Topical Delivery of Natural Products for the Management of Atopic Dermatitis. Pharmaceutics 2023; 15:1724. [PMID: 37376172 DOI: 10.3390/pharmaceutics15061724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic eczematous inflammatory disease that may arise from environmental, genetic, and immunological factors. Despite the efficacy of current treatment options such as corticosteroids, such approaches are mainly focused on symptom relief and may present certain undesirable side effects. In recent years, isolated natural compounds, oils, mixtures, and/or extracts have gained scientific attention because of their high efficiency and moderate to low toxicity. Despite their promising therapeutic effects, the applicability of such natural healthcare solutions is somewhat limited by their instability, poor solubility, and low bioavailability. Therefore, novel nanoformulation-based systems have been designed to overcome these limitations, thus enhancing the therapeutic potential, by promoting the capacity of these natural drugs to properly exert their action in AD-like skin lesions. To the best of our knowledge, this is the first literature review that has focused on summarizing recent nanoformulation-based solutions loaded with natural ingredients, specifically for the management of AD. We suggest that future studies should focus on robust clinical trials that may confirm the safety and effectiveness of such natural-based nanosystems, thus paving the way for more reliable AD treatments.
Collapse
Affiliation(s)
- Mário Pedro Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carla Varela
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products (CIEPQPF), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Laura Mendonça
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
5
|
Raina N, Rani R, Thakur VK, Gupta M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS OMEGA 2023; 8:19145-19167. [PMID: 37305231 PMCID: PMC10249123 DOI: 10.1021/acsomega.2c08016] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
Skin, the largest organ in humans, is an efficient route for the delivery of drugs as it circumvents several disadvantages of the oral and parenteral routes. These advantages of skin have fascinated researchers in recent decades. Drug delivery via a topical route includes moving the drug from a topical product to a locally targeted region with dermal circulation throughout the body and deeper tissues. Still, due to the skin's barrier function, delivery through the skin can be difficult. Drug delivery to the skin using conventional formulations with micronized active components, for instance, lotions, gels, ointments, and creams, results in poor penetration. The use of nanoparticulate carriers is one of the promising strategies, as it provides efficient delivery of drugs through the skin and overcomes the disadvantage of traditional formulations. Nanoformulations with smaller particle sizes contribute to improved permeability of therapeutic agents, targeting, stability, and retention, making nanoformulations ideal for drug delivery through a topical route. Achieving sustained release and preserving a localized effect utilizing nanocarriers can result in the effective treatment of numerous infections or skin disorders. This article aims to evaluate and discuss the most recent developments of nanocarriers as therapeutic agent vehicles for skin conditions with patent technology and a market overview that will give future directions for research. As topical drug delivery systems have shown great preclinical results for skin problems, for future research directions, we anticipate including in-depth studies of nanocarrier behavior in various customized treatments to take into account the phenotypic variability of the disease.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Radha Rani
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, SRUC (Scotland’s Rural College), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Madhu Gupta
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| |
Collapse
|
6
|
Kumar P, Ashawat MS, Pandit V, Singh Verma CP, Ankalgi AD, Kumar M. Recent Trends in Nanocarriers for the Management of Atopic Dermatitis. Pharm Nanotechnol 2023; 11:397-409. [PMID: 36998138 DOI: 10.2174/2211738511666230330115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/07/2023] [Accepted: 01/25/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a pruritic inflammatory skin condition with increasing global prevalence, almost affecting 15% to 30% of children and 5% of adults. AD results due to a complex interaction between the impaired skin barrier function, allergens, and immunological cells. Topical corticosteroids or calcineurin inhibitors in the form of creams or ointments are the mainstay of therapy, but they have low skin penetration and skin barrier repair efficiency. OBJECTIVE The above limitations of conventional dosage forms have motivated the development of nanoformulations of drugs for improved penetration and deposition in the skin for better management of AD. METHODS Databases, such as Pubmed, Elsevier, and Google Scholar, were reviewed for the investigations or reviews published related to the title. RESULTS The present review discusses the advantages of nanoformulations for the management of AD. Further, it also discusses the various types of topically investigated nanoformulations, i.e., polymeric nanoparticles, inorganic nanoparticles, solid lipid nanoparticles, liposomes, ethosomes, transfersomes, cubosomes, and nanoemulsion for the management of atopic dermatitis. In addition, it also discusses advancements in nanoformulations, such as nanofibres, nanosponges, micelles, and nanoformulations embedded textiles development for the management of AD. CONCLUSION The nanoformulations of drugs can be a better alternative for the topical management of AD with enhanced skin penetration and deposition of drugs with reduced systemic side effects and better patient compliance.
Collapse
Affiliation(s)
- Pravin Kumar
- Laureate Institute of Pharmacy, VPO-Kathog, Jwalamukhi, Kangra, H.P, 176031, India
| | | | - Vinay Pandit
- Laureate Institute of Pharmacy, VPO-Kathog, Jwalamukhi, Kangra, H.P, 176031, India
| | | | - Amar Deep Ankalgi
- Laureate Institute of Pharmacy, VPO-Kathog, Jwalamukhi, Kangra, H.P, 176031, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharshi Markendeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
7
|
Atmakuri S, Nene S, Jain H, Joga R, Devabattula G, Godugu C, Srivastava S. Topical delivery of tofacitinib citrate loaded novel nanoemulgel for the management of 2,4-Dichlorodinitrobenzene induced atopic dermatitis in mice model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Holmbäck J, Rinwa V, Halthur T, Rinwa P, Carlsson A, Herslöf B. AKVANO ®: A Novel Lipid Formulation System for Topical Drug Delivery-In Vitro Studies. Pharmaceutics 2022; 14:pharmaceutics14040794. [PMID: 35456628 PMCID: PMC9030418 DOI: 10.3390/pharmaceutics14040794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
A novel formulation technology called AKVANO® has been developed with the aim to provide a tuneable and versatile drug delivery system for topical administration. The vehicle is based on a water-free lipid formulation where selected lipids, mainly phospholipids rich in phosphatidylcholine, are dissolved in a volatile solvent, such as ethanol. With the aim of describing the basic properties of the system, the following physicochemical methods were used: viscometry, dynamic light scattering, NMR diffusometry, and atomic force microscopy. AKVANO formulations are non-viscous, with virtually no or very minute aggregates formed, and when applied to the skin, e.g., by spraying, a thin film consisting of lipid bilayer structures is formed. Standardized in vitro microbiological and irritation tests show that AKVANO formulations meet criteria for antibacterial, antifungal, and antiviral activities and, at the same time, are being investigated as a non-irritant to the skin and eye. The ethanol content in AKVANO facilitates incorporation of many active pharmaceutical ingredients (>80 successfully tested) and the phospholipids seem to act as a solubilizer in the formulation. In vitro skin permeation experiments using Strat-M® membranes have shown that AKVANO formulations can be designed to alter the penetration of active ingredients by changing the lipid composition.
Collapse
Affiliation(s)
- Jan Holmbäck
- Lipidor AB, Svärdvägen 13, SE-182 33 Danderyd, Sweden; (V.R.); (P.R.)
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden
- Correspondence: ; Tel.: +46-707-192-200
| | - Vibhu Rinwa
- Lipidor AB, Svärdvägen 13, SE-182 33 Danderyd, Sweden; (V.R.); (P.R.)
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden
| | - Tobias Halthur
- CR Competence AB, Naturvetarvägen 14, SE-223 62 Lund, Sweden;
- Biofilms—Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Per Albin Hanssons väg 35, SE-214 32 Malmö, Sweden
| | - Puneet Rinwa
- Lipidor AB, Svärdvägen 13, SE-182 33 Danderyd, Sweden; (V.R.); (P.R.)
| | - Anders Carlsson
- MediGelium AB, Hornsbergs strand 49, SE-112 16 Stockholm, Sweden;
| | - Bengt Herslöf
- Lipidea AB, Brunbärsvägen 2, SE-114 21 Stockholm, Sweden;
| |
Collapse
|
9
|
Ghosalkar S, Singh P, Ravikumar P. Emerging topical drug delivery approaches for the treatment of Atopic dermatitis. J Cosmet Dermatol 2021; 21:536-549. [PMID: 34935274 DOI: 10.1111/jocd.14685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Atopic dermatitis is a chronic, relapsing skin inflammation disease that generally affects 20% of children and 1-3% of adults. It is characterized by pruritus, inflammatory skin lesions, and skin barrier defect. The pillar treatment is topical therapies that have shown great adherence and incredible results in alleviating symptoms of atopic dermatitis. Topical corticosteroids and calcineurin inhibitors have shown improvement in the symptoms of atopic dermatitis but have certain side effects. There is need to develop new therapies or novel drug delivery approaches which can overcome drawbacks of the conventional formulation and increase the therapeutic efficacy. AIM The scope of this review is to describe the new topical therapies including phosphodiesterase inhibitors, Janus kinase inhibitors, and nano-formulations such as nanoemulsion, polymeric and lipid nanoparticles, vesicular system, and micelles. METHODS The article reviews and discusses the published literature of the topical drug delivery approaches for treatment of Atopic dermatitis. RESULTS The reported literature highlighted the benefits of novel topical formulations exhibiting targeted drug delivery, better penetration, enhanced therapeutic efficacy, and overcome systemic side effects. CONCLUSION Literature indicated that the new therapies and novel drug delivery approaches found to be the therapeutically more effective in increasing the efficacy of drugs and reducing the side effects in comparison with the conventional treatments for Atopic dermatitis. This has provided a way to modify and develop more such formulations for dermal delivery.
Collapse
Affiliation(s)
- Shruti Ghosalkar
- Department of Pharmaceutics, SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400056, India
| | - Prabha Singh
- Department of Pharmaceutics, SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400056, India
| | - Padmini Ravikumar
- Department of Pharmaceutics, SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
10
|
Azelaic acid and Melaleuca alternifolia essential oil co-loaded vesicular carrier for combinational therapy of acne. Ther Deliv 2021; 13:13-29. [PMID: 34842461 DOI: 10.4155/tde-2021-0059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Azelaic acid (AzA), a comedolytic, antibacterial, anti-inflammatory anti-melanogenic agent, prescribed against acne vulgaris is safe on skin. Its combination with another widely used anti-acne agent, tea tree oil (EO) whose delivery is limited by volatility, instability and lipophilicity constraints was attempted. Method: Solvent injection was used to prepare AzA-EO integrated ethosomes. Result: Ethosomes were transformed into carbopol hydrogel, which exhibited pseudo-plastic properties with appreciable firmness, work of shear, stickiness and work of adhesion. The hydrogel showed better permeation and retention characteristics vis-a-vis commercial formulation (AzidermTM), when evaluated in Wistar rat skin. Further, ethosome hydrogel composite was better tolerated with no side effects. Conclusion: The findings suggests that the aforementioned strategy could be a potential treatment used for acne management.
Collapse
|