1
|
Yang J, Xie D, Ma X. Recent Advances in Chemical Synthesis of Amino Sugars. Molecules 2023; 28:4724. [PMID: 37375279 DOI: 10.3390/molecules28124724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amino sugars are a kind of carbohydrates with one or more hydroxyl groups replaced by an amino group. They play crucial roles in a broad range of biological activities. Over the past few decades, there have been continuing efforts on the stereoselective glycosylation of amino sugars. However, the introduction of glycoside bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, diastereomeric mixtures of O-glycoside are often produced if aminoglycoside lack a C2 substituent. This review focuses on the updated overview of the way to stereoselective synthesis of 1,2-cis-aminoglycoside. The scope, mechanism, and the applications in the synthesis of complex glycoconjugates for the representative methodologies were also included.
Collapse
Affiliation(s)
- Jian Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demeng Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemical Synthesis and Semisynthesis of Lipidated Proteins. Angew Chem Int Ed Engl 2022; 61:e202111266. [PMID: 34611966 PMCID: PMC9303669 DOI: 10.1002/anie.202111266] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Lipidation is a ubiquitous modification of peptides and proteins that can occur either co- or post-translationally. An array of different lipid classes can adorn proteins and has been shown to influence a number of crucial biological activities, including the regulation of signaling, cell-cell adhesion events, and the anchoring of proteins to lipid rafts and phospholipid membranes. Whereas nature employs a range of enzymes to install lipid modifications onto proteins, the use of these for the chemoenzymatic generation of lipidated proteins is often inefficient or impractical. An alternative is to harness the power of modern synthetic and semisynthetic technologies to access lipid-modified proteins in a pure and homogeneously modified form. This Review aims to highlight significant advances in the development of lipidation and ligation chemistry and their implementation in the synthesis and semisynthesis of homogeneous lipidated proteins that have enabled the influence of these modifications on protein structure and function to be uncovered.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australia
| | - Julia Kriegesmann
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
3
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemische Synthese und Semisynthese von lipidierten Proteinen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202111266. [PMID: 38504765 PMCID: PMC10947004 DOI: 10.1002/ange.202111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/11/2022]
Abstract
AbstractLipidierung ist eine ubiquitäre Modifikation von Peptiden und Proteinen, die entweder co‐ oder posttranslational auftreten kann. Für die Vielzahl von Lipidklassen wurde gezeigt, dass diese viele entscheidende biologische Aktivitäten, z. B. die Regulierung der Signalweiterleitung, Zell‐Zell‐Adhäsion sowie die Anlagerung von Proteinen an Lipid‐Rafts und Phospholipidmembranen, beeinflussen. Während die Natur Enzyme nutzt, um Lipidmodifikationen in Proteine einzubringen, ist ihre Nutzung für die chemoenzymatische Herstellung von lipidierten Proteinen häufig ineffizient. Eine Alternative ist die Kombination moderner synthetischer und semisynthetischer Techniken, um lipidierte Proteine in reiner und homogen modifizierter Form zu erhalten. Dieser Aufsatz erörtert Fortschritte in der Entwicklung der Lipidierungs‐ und Ligationschemie und deren Anwendung in der Synthese und Semisynthese homogen lipidierter Proteine, die es ermöglichen, den Einfluss dieser Modifikationen auf die Proteinstruktur und ‐funktion zu untersuchen.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australien
| | - Julia Kriegesmann
- Institut für Biologische ChemieFakultät für ChemieUniversität WienWienÖsterreich
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| |
Collapse
|
4
|
Dohle W, Su X, Mills SJ, Rossi A, Taylor CW, Potter BVL. A synthetic cyclitol-nucleoside conjugate polyphosphate is a highly potent second messenger mimic. Chem Sci 2019; 10:5382-5390. [PMID: 31171961 PMCID: PMC6540904 DOI: 10.1039/c9sc00445a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Reactions that form sec-sec ethers are well known, but few lead to compounds with dense functionality around the O-linkage. Replacement of the α-glucopyranosyl unit of adenophostin A, a potent d-myo-inositol 1,4,5-trisphosphate (IP3R) agonist, with a d-chiro-inositol surrogate acting substantially as a pseudosugar, leads to "d-chiro-inositol adenophostin". At its core, this cyclitol-nucleoside trisphosphate comprises a nucleoside sugar linked via an axial d-chiro-inositol 1-hydroxyl-adenosine 3'-ribose ether linkage. A divergent synthesis of d-chiro-inositol adenophostin has been achieved. Key features of the synthetic strategy to produce a triol for phosphorylation include a new selective mono-tosylation of racemic 1,2:4,5-di-O-isopropylidene-myo-inositol using tosyl imidazole; subsequent conversion of the product into separable camphanate ester derivatives, one leading to a chiral myo-inositol triflate used as a synthetic building block and the other to l-5-O-methyl-myo-inositol [l-(+)-bornesitol] to assign the absolute configuration; the nucleophilic coupling of an alkoxide of a ribose pent-4-ene orthoester unit with a structurally rigid chiral myo-inositol triflate derivative, representing the first sec-sec ether formation between a cyclitol and ribose. Reaction of the coupled product with a silylated nucleobase completes the assembly of the core structure. Further protecting group manipulation, mixed O- and N-phosphorylation, and subsequent removal of all protecting groups in a single step achieves the final product, avoiding a separate N6 protection/deprotection strategy. d-chiro-Inositol adenophostin evoked Ca2+ release through IP3Rs at lower concentrations than adenophostin A, hitherto the most potent known agonist of IP3Rs.
Collapse
Affiliation(s)
- Wolfgang Dohle
- Medicinal Chemistry & Drug Discovery
, Department of Pharmacology
, University of Oxford
,
Mansfield Road
, Oxford
, OX1 3QT
, UK
.
; Tel: +44-1865-271945
| | - Xiangdong Su
- Medicinal Chemistry & Drug Discovery
, Department of Pharmacology
, University of Oxford
,
Mansfield Road
, Oxford
, OX1 3QT
, UK
.
; Tel: +44-1865-271945
| | - Stephen J. Mills
- Medicinal Chemistry & Drug Discovery
, Department of Pharmacology
, University of Oxford
,
Mansfield Road
, Oxford
, OX1 3QT
, UK
.
; Tel: +44-1865-271945
| | - Ana M. Rossi
- Department of Pharmacology
, University of Cambridge
,
Tennis Court Road
, Cambridge
, CB2 1PD
, UK
| | - Colin W. Taylor
- Department of Pharmacology
, University of Cambridge
,
Tennis Court Road
, Cambridge
, CB2 1PD
, UK
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery
, Department of Pharmacology
, University of Oxford
,
Mansfield Road
, Oxford
, OX1 3QT
, UK
.
; Tel: +44-1865-271945
| |
Collapse
|
5
|
Götze S, Azzouz N, Tsai YH, Groß U, Reinhardt A, Anish C, Seeberger PH, Varón Silva D. Toxoplasmose-Diagnose mithilfe eines synthetisch hergestellten Glycosylphosphatidylinositol-Glycans. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Götze S, Azzouz N, Tsai YH, Groß U, Reinhardt A, Anish C, Seeberger PH, Varón Silva D. Diagnosis of toxoplasmosis using a synthetic glycosylphosphatidylinositol glycan. Angew Chem Int Ed Engl 2014; 53:13701-5. [PMID: 25323101 DOI: 10.1002/anie.201406706] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 12/12/2022]
Abstract
Around 2 billion people worldwide are infected with the apicomplexan parasite Toxoplasma gondii which induces a variety of medical conditions. For example, primary infection during pregnancy can result in fetal death or mental retardation of the child. Diagnosis of acute infections in pregnant women is challenging but crucially important as the drugs used to treat T. gondii infections are potentially harmful to the unborn child. Better, faster, more reliable, and cheaper means of diagnosis by using defined antigens for accurate serological tests are highly desirable. Synthetic pathogen-specific glycosylphosphatidylinositol (GPI) glycan antigens are diagnostic markers and have been used to distinguish between toxoplasmosis disease states using human sera.
Collapse
Affiliation(s)
- Sebastian Götze
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam (Germany); Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
7
|
McConnell MS, Mensah EA, Nguyen HM. Stereoselective α-glycosylation of C(6)-hydroxyl myo-inositols via nickel catalysis-application to the synthesis of GPI anchor pseudo-oligosaccharides. Carbohydr Res 2013; 381:146-52. [PMID: 24121123 DOI: 10.1016/j.carres.2013.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/06/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
Glycosylphosphatidyl inositol (GPI) anchors play a key role in many eukaryotic biological pathways. Stereoselective synthesis of GPI anchor analogues have proven to be critical for probing the biosynthesis, structure, and biological properties of these compounds. Challenges that have emerged from these efforts include the preparation of the selectively protected myo-inositol building blocks and the stereoselective construction of glucosamine α-linked myo-inositol containing pseudodisaccharide units. Herein, we describe the effectiveness of the cationic nickel(II) catalyst, Ni(4-F-PhCN)4(OTf)2, at promoting selective formation of 1,2-cis-2-amino glycosidic bonds between the C(2)-N-substituted benzylideneamino trihaloacetimidate donors and C(6)-hydroxyl myo-inositol acceptors. This catalytic coupling process allows rapid access to pseudosaccharides of GPI anchors in good yields and with excellent levels of α-selectivity (α:β=10:1-20:1). In stark contrast, activation of trichloroacetimidate donors containing the C(2)-N-substituted benzylidene group with TMSOTf and BF3(.)OEt2 provided the desired pseudodisaccharides as a 1:1 mixture of α- and β-isomers.
Collapse
Affiliation(s)
- Matthew S McConnell
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| | | | | |
Collapse
|
8
|
Swarts BM. Recent Advances in the Chemical Synthesis of Glycosylphosphatidylinositols (GPIs): Expanding Synthetic Versatility for Investigating GPI Biology. J Carbohydr Chem 2013. [DOI: 10.1080/07328303.2013.831435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Tsai YH, Götze S, Vilotijevic I, Grube M, Silva DV, Seeberger PH. A general and convergent synthesis of diverse glycosylphosphatidylinositol glycolipids. Chem Sci 2013. [DOI: 10.1039/c2sc21515b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Swarts BM, Guo Z. Chemical synthesis of glycosylphosphatidylinositol anchors. Adv Carbohydr Chem Biochem 2012; 67:137-219. [PMID: 22794184 DOI: 10.1016/b978-0-12-396527-1.00004-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Tsai YH, Liu X, Seeberger PH. Chemical biology of glycosylphosphatidylinositol anchors. Angew Chem Int Ed Engl 2012; 51:11438-56. [PMID: 23086912 DOI: 10.1002/anie.201203912] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) are complex glycolipids that are covalently linked to the C-terminus of proteins as a posttranslational modification. They anchor the attached protein to the cell membrane and are essential for normal functioning of eukaryotic cells. GPI-anchored proteins are structurally and functionally diverse. Many GPIs have been structurally characterized but comprehension of their biological functions, beyond the simple physical anchoring, remains largely speculative. Work on functional elucidation at a molecular level is still limited. This Review focuses on the roles of GPI unraveled by using synthetic molecules and summarizes the structural diversity of GPIs, as well as their biological and chemical syntheses.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | | | | |
Collapse
|
12
|
Tsai YH, Liu X, Seeberger PH. Chemische Biologie der Glycosylphosphatidylinosit-Anker. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Burgula S, Swarts BM, Guo Z. Total synthesis of a glycosylphosphatidylinositol anchor of the human lymphocyte CD52 antigen. Chemistry 2012; 18:1194-201. [PMID: 22189835 PMCID: PMC3312375 DOI: 10.1002/chem.201102545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Indexed: 11/09/2022]
Abstract
The first total synthesis of a glycosylphosphatidylinositol (GPI) anchor bearing a polyunsaturated arachidonoyl fatty acid is reported. This lipid is found in mammalian GPIs that do not undergo lipid remodeling, a process that has important implications in the localization and function of GPI-anchored proteins. Incorporation of the oxidation- and reduction-sensitive arachidonoyl lipid in the target GPI was accomplished by using the para-methoxybenzyl (PMB) group for permanent hydroxyl group protection, which featured a selective, rapid, and efficient global deprotection protocol. The flexibility of this synthetic strategy was further highlighted by the inclusion of two additional GPI core structural modifications present in the GPI anchor of the human lymphocyte CD52 antigen.
Collapse
Affiliation(s)
| | | | - Zhongwu Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (USA), Phone: (+1) 313 577 2557, Fax: (+1) 313 577 8822
| |
Collapse
|
14
|
Baran A, Bekarlar M, Aydin G, Nebioglu M, Şahin E, Balci M. Synthesis of bishomoinositols and an entry for construction of a substituted 3-oxabicyclo[3.3.1]nonane skeleton. J Org Chem 2012; 77:1244-50. [PMID: 22229812 DOI: 10.1021/jo202494v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
1,3,3a,7a-Tetrahydro-2-benzofuran was used as key compound for the synthesis of various bishomoinositol derivatives. The diene was subjected to an epoxidation reaction for further functionalization of the diene unit. The bisepoxide obtained was submitted to a ring-opening reaction with acid in the presence of water. Various bishomoinositols were synthesized. However, when the reaction was carried out in the presence of acetic anhydride, a substituted 3-oxabicyclo[3.3.1]nonane skeleton was formed. The mechanism of the formation of the products is discussed.
Collapse
Affiliation(s)
- Arif Baran
- Department of Chemistry, Sakarya University, 54100 Sakarya, Turkey.
| | | | | | | | | | | |
Collapse
|
15
|
Tsai YH, Götze S, Azzouz N, Hahm HS, Seeberger PH, Varon Silva D. Eine allgemeine Methode zur Herstellung von GPI-Membranankern am Beispiel der Totalsynthese des “Low-molecular-weight-Antigens” von Toxoplasma gondii. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Tsai YH, Götze S, Azzouz N, Hahm HS, Seeberger PH, Varon Silva D. A general method for synthesis of GPI anchors illustrated by the total synthesis of the low-molecular-weight antigen from Toxoplasma gondii. Angew Chem Int Ed Engl 2011; 50:9961-4. [PMID: 21898727 DOI: 10.1002/anie.201103483] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/04/2011] [Indexed: 11/10/2022]
Abstract
Building blocks: a new, general synthetic strategy, which allows the construction of branched glycosylphosphatidylinositols (GPIs), enables the synthesis of parasitic glycolipid 1 from Toxoplasma gondii. In addition, the structure is further confirmed by recognition of monoclonal antibodies.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Department of Biomolecular Systems, Max Planck Institut of Colloids and Interfaces, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Saikam V, Raghupathy R, Yadav M, Gannedi V, Singh PP, Qazi NA, Sawant SD, Vishwakarma RA. Synthesis of new fluorescently labeled glycosylphosphatidylinositol (GPI) anchors. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
|
19
|
Nikolaev AV, Al-Maharik N. Synthetic glycosylphosphatidylinositol (GPI) anchors: how these complex molecules have been made. Nat Prod Rep 2011; 28:970-1020. [PMID: 21448495 DOI: 10.1039/c0np00064g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Andrei V Nikolaev
- College of Life Sciences, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK.
| | | |
Collapse
|
20
|
Swarts BM, Guo Z. Chemical synthesis and functionalization of clickable glycosylphosphatidylinositol anchors. Chem Sci 2011; 2:2342-2352. [PMID: 22163072 PMCID: PMC3233219 DOI: 10.1039/c1sc00440a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchorage is a common posttranslational modification of eukaryotic proteins. Chemical synthesis of structurally defined GPIs and GPI derivatives is a necessary step toward understanding the properties and functions of these molecules in biological systems. In this work, the synthesis of several functionalized GPI anchors was accomplished using the para-methoxybenzyl (PMB) group for permanent hydroxyl protection, which allowed the incorporation of functionalities that are incompatible with permanent protecting groups traditionally used in carbohydrate synthesis. A flexible convergent-divergent assembly strategy enabled efficient access to a diverse set of target structures, including "clickable" Alkynyl-GPIs 1 and 2 and Azido-GPI 3. For global deprotection, a one-pot reaction was employed to afford the target GPIs in excellent yields (85-97%). Fully deprotected clickable GPIs 2 and 3 were readily conjugated to imaging and affinity probes via Cu(I)-catalyzed and Cu-free strain-promoted [3+2] cycloaddition, respectively, resulting in GPI-Fluor 4 and GPI-Biotin 5.
Collapse
Affiliation(s)
- Benjamin M. Swarts
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA. Fax: 1-313-577-8822; Tel: 1-313-577-2557
| | - Zhongwu Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA. Fax: 1-313-577-8822; Tel: 1-313-577-2557
| |
Collapse
|
21
|
Affiliation(s)
- Feng Cai
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
22
|
Yu F, Guo Z. Efficient syntheses of chiral myo-inositol derivatives—key intermediates in glycosylphosphatidylinositol (GPI) syntheses. Bioorg Med Chem Lett 2009; 19:3852-5. [DOI: 10.1016/j.bmcl.2009.03.151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
|
23
|
Wu Q, Guo Z. Glycosylphosphatidylinositols are potential targets for the development of novel inhibitors for aerolysin-type of pore-forming bacterial toxins. Med Res Rev 2009; 30:258-69. [DOI: 10.1002/med.20167] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Becker C, Liu X, Olschewski D, Castelli R, Seidel R, Seeberger P. Semisynthesis of a Glycosylphosphatidylinositol-Anchored Prion Protein. Angew Chem Int Ed Engl 2008; 47:8215-9. [DOI: 10.1002/anie.200802161] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Becker C, Liu X, Olschewski D, Castelli R, Seidel R, Seeberger P. Semisynthese eines Glycosylphosphatidylinositol-verankerten Prionproteins. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
26
|
Paulick MG, Bertozzi CR. The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 2008; 47:6991-7000. [PMID: 18557633 PMCID: PMC2663890 DOI: 10.1021/bi8006324] [Citation(s) in RCA: 399] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Positioned at the C-terminus of many eukaryotic proteins, the glycosylphosphatidylinositol (GPI) anchor is a posttranslational modification that anchors the modified protein in the outer leaflet of the cell membrane. The GPI anchor is a complex structure comprising a phosphoethanolamine linker, glycan core, and phospholipid tail. GPI-anchored proteins are structurally and functionally diverse and play vital roles in numerous biological processes. While several GPI-anchored proteins have been characterized, the biological functions of the GPI anchor have yet to be elucidated at a molecular level. This review discusses the structural diversity of the GPI anchor and its putative cellular functions, including involvement in lipid raft partitioning, signal transduction, targeting to the apical membrane, and prion disease pathogenesis. We specifically highlight studies in which chemically synthesized GPI anchors and analogues have been employed to study the roles of this unique posttranslational modification.
Collapse
Affiliation(s)
- Margot G Paulick
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
27
|
Chevalier F, Lopez-Prados J, Groves P, Perez S, Martín-Lomas M, Nieto PM. Structure and dynamics of the conserved protein GPI anchor core inserted into detergent micelles. Glycobiology 2006; 16:969-80. [PMID: 16774909 DOI: 10.1093/glycob/cwl015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A suitable approach which combines nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations have been used to study the structure and the dynamics of the glycosylphosphatidylinositol (GPI) anchor Manalphal-2Manalpha1-6Manalphal -4GlcNalpha1-6myo-inositol-1-OPO(3)-sn-1,2-dimyristoylglycerol (1) incorporated into dodecylphosphatidylcholine (DPC) micelles. The results have been compared to those previously obtained for the products obtainable from (1) after phospholipase cleavage, in aqueous solution. Relaxation and diffusion NMR experiments were used to establish the formation of stable aggregates and the insertion of (1) into the micelles. MD calculations were performed including explicit water, sodium and chloride ions and using the Particle Mesh Ewald approach for the evaluation of the electrostatic energy term. The MD predicted three dimensional structure and dynamics were substantiated by nuclear overhauser effect (NOE) measurements and relaxation data. The pseudopentasaccharide structure, which was not affected by incorporation of (1) into the micelle, showed a complex dynamic behaviour with a faster relative motion at the terminal mannopyranose unit and decreased mobility close to the micelle. This motion may be better described as an oscillation relative to the membrane rather than a folding event.
Collapse
Affiliation(s)
- Franck Chevalier
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC, Isla de la Cartuja, Seville, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Bonilla JB, Cid MB, Contreras FX, Goñi FM, Martín-Lomas M. Phospholipase cleavage of D- and L-chiro-glycosylphosphoinositides asymmetrically incorporated into liposomal membranes. Chemistry 2006; 12:1513-28. [PMID: 16315198 DOI: 10.1002/chem.200500833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The nature of chiro-inositol-containing inositolphosphoglycans (IPGs), reported to be putative insulin mediators, was studied by examination of the substrate specificities of the phosphatidylinositol-specific phospholipase C (PI-PLC) and the glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) by using a series of synthetic D- and L-chiro-glycosylphosphoinositides. 3-O-alpha-D-Glucosaminyl- (3) and -galactosaminyl-2-phosphatidyl-L-chiro-inositol (4), which show the maximum stereochemical similarity to the 6-O-alpha-D-glucosaminylphosphatidylinositol pseudodisaccharide motifs of GPI anchors, were synthesized and asymmetrically incorporated into phospholipid bilayers in the form of large unilamellar vesicles (LUVs). Similarly, 2-O-alpha-D-glucosaminyl- (5) and -galactosaminyl-1-phosphatidyl-D-chiro-inositol (6), which differ from the corresponding pseudodisaccharide motif of the GPI anchors only in the axial orientation of the phosphatidyl moiety, were also synthesized and asymmetrically inserted into LUVs. The cleavage of these synthetic molecules in the liposomal constructs by PI-PLC from Bacillus cereus and by GPI-PLD from bovine serum was studied with the use of 6-O-alpha-D-glucosaminylphosphatidylinositol (7) and the conserved GPI anchor structure (8) as positive controls. Although PI-PLC cleaved 3 and 4 with about the same efficiency as 7 and 8, this enzyme did not accept 5 or 6. GPI-PLD accepted both the L-chiro- (3 and 4) and the D-chiro- (5 and 6) glycosylinositolphosphoinositides. Therefore, IPGs containing L-chiro-inositol only are expected to be released from chiro-inositol-containing GPIs if the cleavage is effected by a PI-PLC, whereas GPI-PLD cleavage could result in both L-chiro- and D-chiro-inositol-containing IPGs.
Collapse
Affiliation(s)
- Julia B Bonilla
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | | | | | | | | |
Collapse
|
29
|
López‐Prados J, Martín‐Lomas M. Inositolphosphoglycan Mediators: An Effective Synthesis of the Conserved Linear GPI Anchor Structure*. J Carbohydr Chem 2005. [DOI: 10.1081/car-200066956] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Hölemann A, Seeberger PH. Carbohydrate diversity: synthesis of glycoconjugates and complex carbohydrates. Curr Opin Biotechnol 2005; 15:615-22. [PMID: 15560990 DOI: 10.1016/j.copbio.2004.10.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fundamental role of glycoconjugates in many biological processes is now well appreciated and has intensified the development of innovative and improved synthetic strategies. All areas of synthetic methodology have seen major advances and many complex, highly branched carbohydrates and glycoproteins have been prepared using solution- and/or solid-phase approaches. The development of an automated oligosaccharide synthesizer provides rapid access to biologically relevant compounds. These chemical approaches help to produce sufficient quantities of defined oligosaccharides for biological studies. Synthetic chemistry also supports an improved understanding of glycobiology and will eventually result in the discovery of new therapeutics.
Collapse
Affiliation(s)
- Alexandra Hölemann
- Eidgenössische Technische Hochschule Zürich, Laboratory for Organic Chemistry, ETH Hönggerberg, HCI F315, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | |
Collapse
|