1
|
Foster SW, Xie X, Hellmig JM, Moura‐Letts G, West WR, Lee ML, Grinias JP. Online monitoring of small volume reactions using compact liquid chromatography instrumentation. SEPARATION SCIENCE PLUS 2022; 5:213-219. [PMID: 37008988 PMCID: PMC10065474 DOI: 10.1002/sscp.202200012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A wide variety of analytical techniques have been employed for monitoring chemical reactions, with online instrumentation providing additional benefits compared to offline analysis. A challenge in the past for online monitoring has been placement of the monitoring instrumentation as close as possible to the reaction vessel to maximize sampling temporal resolution and preserve sample composition integrity. Furthermore, the ability to sample very small volumes from bench-scale reactions allows the use of small reaction vessels and conservation of expensive reagents. In this study, a compact capillary LC instrument was used for online monitoring of as small as 1 mL total volume of a chemical reaction mixture, with automated sampling of nL-scale volumes directly from the reaction vessel used for analysis. Analyses to demonstrate short term (~2 h) and long term (~ 50 h) reactions were conducted using tandem on-capillary ultraviolet absorbance followed by in-line MS detection or ultraviolet absorbance detection alone, respectively. For both short term and long term reactions (10 and 250 injections, respectively), sampling approaches using syringe pumps minimized the overall sample loss to ~0.2% of the total reaction volume.
Collapse
Affiliation(s)
- Samuel W. Foster
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - Xiaofeng Xie
- Axcend LLC Provo Utah USA
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah USA
| | - Jacob M. Hellmig
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - Gustavo Moura‐Letts
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | | | - Milton L. Lee
- Axcend LLC Provo Utah USA
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah USA
| | - James P. Grinias
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| |
Collapse
|
2
|
Lehnhardt F, Nobis A, Skornia A, Becker T, Gastl M. A Comprehensive Evaluation of Flavor Instability of Beer (Part 1): Influence of Release of Bound State Aldehydes. Foods 2021; 10:foods10102432. [PMID: 34681479 PMCID: PMC8536144 DOI: 10.3390/foods10102432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Flavor instability of pale lager beer depends decisively on aroma-active aldehydes from the Maillard reaction, Strecker degradation, and lipid oxidation, which are formed in various oxidative and non-oxidative reactions. Therein, aldehydes can be formed de novo and be released from bound states to a free, aroma-active form during aging. During malting and brewing, proteolysis affects the amount of soluble nitrogen and thus flavor instability in different ways (e.g., precursors for de novo formation and binding agents for bound states). To isolate nitrogen-related aging processes, beers from malts (two barley varieties, three proteolytic malt modifications) were produced on a 50 L scale in part 1 of this study. Sensory analysis revealed increased flavor instability for beers with higher amounts of soluble nitrogen. Especially Strecker aldehydes significantly increased with malt modification. The release of bound state aldehydes revealed most free aldehydes in fresh beers and with higher malt modification. During aging, the equilibrium between free and bound state aldehydes shifted toward the free form. These results reveal a nitrogen-dependent bound pool of aldehydes that is depleted during aging and is responsible for aged aroma, especially in the early and medium stages of aging. Therefore, bound state aldehydes are indicators of the early-stage prediction of flavor instability already in a fresh condition.
Collapse
|
3
|
van der Vlag R, Yagiz Unver M, Felicetti T, Twarda‐Clapa A, Kassim F, Ermis C, Neochoritis CG, Musielak B, Labuzek B, Dömling A, Holak TA, Hirsch AKH. Optimized Inhibitors of MDM2 via an Attempted Protein-Templated Reductive Amination. ChemMedChem 2020; 15:370-375. [PMID: 31774938 PMCID: PMC7064911 DOI: 10.1002/cmdc.201900574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Innovative and efficient hit-identification techniques are required to accelerate drug discovery. Protein-templated fragment ligations represent a promising strategy in early drug discovery, enabling the target to assemble and select its binders from a pool of building blocks. Development of new protein-templated reactions to access a larger structural diversity and expansion of the variety of targets to demonstrate the scope of the technique are of prime interest for medicinal chemists. Herein, we present our attempts to use a protein-templated reductive amination to target protein-protein interactions (PPIs), a challenging class of drug targets. We address a flexible pocket, which is difficult to achieve by structure-based drug design. After careful analysis we did not find one of the possible products in the kinetic target-guided synthesis (KTGS) approach, however subsequent synthesis and biochemical evaluation of each library member demonstrated that all the obtained molecules inhibit MDM2. The most potent library member (Ki =0.095 μm) identified is almost as active as Nutlin-3, a potent inhibitor of the p53-MDM2 PPI.
Collapse
Affiliation(s)
- Ramon van der Vlag
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - M. Yagiz Unver
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Tommaso Felicetti
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Liceo 106123PerugiaItaly
| | | | - Fatima Kassim
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Cagdas Ermis
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Constantinos G. Neochoritis
- Department of Pharmacy, Drug Design groupUniversity of GroningenA. Deusinglaan 1GroningenThe Netherlands
- Chemistry departmentUniversity of Crete70013HeraklionGreece
| | - Bogdan Musielak
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
| | - Beata Labuzek
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
| | - Alexander Dömling
- Department of Pharmacy, Drug Design groupUniversity of GroningenA. Deusinglaan 1GroningenThe Netherlands
| | - Tad A. Holak
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
| | - Anna K. H. Hirsch
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus Building E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus Building E8.166123SaarbrückenGermany
| |
Collapse
|
4
|
Frei P, Hevey R, Ernst B. Dynamic Combinatorial Chemistry: A New Methodology Comes of Age. Chemistry 2018; 25:60-73. [DOI: 10.1002/chem.201803365] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Priska Frei
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Rachel Hevey
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
5
|
Das M, Yang T, Dong J, Prasetya F, Xie Y, Wong KHQ, Cheong A, Woon ECY. Multiprotein Dynamic Combinatorial Chemistry: A Strategy for the Simultaneous Discovery of Subfamily-Selective Inhibitors for Nucleic Acid Demethylases FTO and ALKBH3. Chem Asian J 2018; 13:2854-2867. [PMID: 29917331 DOI: 10.1002/asia.201800729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/12/2018] [Indexed: 12/18/2022]
Abstract
Dynamic combinatorial chemistry (DCC) is a powerful supramolecular approach for discovering ligands for biomolecules. To date, most, if not all, biologically templated DCC systems employ only a single biomolecule to direct the self-assembly process. To expand the scope of DCC, herein, a novel multiprotein DCC strategy has been developed that combines the discriminatory power of a zwitterionic "thermal tag" with the sensitivity of differential scanning fluorimetry. This strategy is highly sensitive and could differentiate the binding of ligands to structurally similar subfamily members. Through this strategy, it was possible to simultaneously identify subfamily-selective probes against two clinically important epigenetic enzymes: FTO (7; IC50 =2.6 μm) and ALKBH3 (8; IC50 =3.7 μm). To date, this is the first report of a subfamily-selective ALKBH3 inhibitor. The developed strategy could, in principle, be adapted to a broad range of proteins; thus it is of broad scientific interest.
Collapse
MESH Headings
- AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/antagonists & inhibitors
- AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/chemistry
- AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/genetics
- AlkB Homolog 5, RNA Demethylase/antagonists & inhibitors
- AlkB Homolog 5, RNA Demethylase/chemistry
- AlkB Homolog 5, RNA Demethylase/genetics
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/chemistry
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
- Catalysis
- Combinatorial Chemistry Techniques/methods
- Enzyme Inhibitors/chemistry
- Fluorometry/methods
- Humans
- Hydrazones/chemistry
- Kinetics
- Ligands
- Molecular Structure
- Oxidoreductases, O-Demethylating/antagonists & inhibitors
- Oxidoreductases, O-Demethylating/chemistry
- Oxidoreductases, O-Demethylating/genetics
- Peptides/chemistry
- Peptides/genetics
- Protein Denaturation
- Protein Engineering
- Protein Structure, Secondary
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Transition Temperature
Collapse
Affiliation(s)
- Mohua Das
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Tianming Yang
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Jinghua Dong
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Fransisca Prasetya
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Yiming Xie
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Kendra H Q Wong
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Adeline Cheong
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Esther C Y Woon
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
6
|
Worrell BT, Mavila S, Wang C, Kontour TM, Lim CH, McBride MK, Musgrave CB, Shoemaker R, Bowman CN. A user's guide to the thiol-thioester exchange in organic media: scope, limitations, and applications in material science. Polym Chem 2018. [DOI: 10.1039/c8py01031e] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The dynamic exchange of thiols and thioesters in organic media was explored, leading to room temperature plasticity in crosslinked polymers.
Collapse
Affiliation(s)
- Brady T. Worrell
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Chen Wang
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Taylor M. Kontour
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Chern-Hooi Lim
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Matthew K. McBride
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Charles B. Musgrave
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Richard Shoemaker
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
- Material Science and Engineering Program
| |
Collapse
|
7
|
Frei P, Pang L, Silbermann M, Eriş D, Mühlethaler T, Schwardt O, Ernst B. Target-directed Dynamic Combinatorial Chemistry: A Study on Potentials and Pitfalls as Exemplified on a Bacterial Target. Chemistry 2017; 23:11570-11577. [PMID: 28654733 DOI: 10.1002/chem.201701601] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Indexed: 12/28/2022]
Abstract
Target-directed dynamic combinatorial chemistry (DCC) is an emerging technique for the efficient identification of inhibitors of pharmacologically relevant targets. In this contribution, we present an application for a bacterial target, the lectin FimH, a crucial virulence factor of uropathogenic E. coli being the main cause of urinary tract infections. A small dynamic library of acylhydrazones was formed from aldehydes and hydrazides and equilibrated at neutral pH in presence of aniline as nucleophilic catalyst. The major success factors turned out to be an accordingly adjusted ratio of scaffolds and fragments, an adequate sample preparation prior to HPLC analysis, and the data processing. Only then did the ranking of the dynamic library constituents correlate well with affinity data. Furthermore, as a support of DCC applications especially to larger libraries, a new protocol for improved hit identification was established.
Collapse
Affiliation(s)
- Priska Frei
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Lijuan Pang
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Marleen Silbermann
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Deniz Eriş
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Tobias Mühlethaler
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Oliver Schwardt
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
8
|
Protein-Directed Dynamic Combinatorial Chemistry: A Guide to Protein Ligand and Inhibitor Discovery. Molecules 2016; 21:molecules21070910. [PMID: 27438816 PMCID: PMC6273345 DOI: 10.3390/molecules21070910] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 01/16/2023] Open
Abstract
Protein-directed dynamic combinatorial chemistry is an emerging technique for efficient discovery of novel chemical structures for binding to a target protein. Typically, this method relies on a library of small molecules that react reversibly with each other to generate a combinatorial library. The components in the combinatorial library are at equilibrium with each other under thermodynamic control. When a protein is added to the equilibrium mixture, and if the protein interacts with any components of the combinatorial library, the position of the equilibrium will shift and those components that interact with the protein will be amplified, which can then be identified by a suitable biophysical technique. Such information is useful as a starting point to guide further organic synthesis of novel protein ligands and enzyme inhibitors. This review uses literature examples to discuss the practicalities of applying this method to inhibitor discovery, in particular, the set-up of the combinatorial library, the reversible reactions that may be employed, and the choice of detection methods to screen protein ligands from a mixture of reversibly forming molecules.
Collapse
|
9
|
Mondal M, Hirsch AKH. Dynamic combinatorial chemistry: a tool to facilitate the identification of inhibitors for protein targets. Chem Soc Rev 2015; 44:2455-88. [DOI: 10.1039/c4cs00493k] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dynamic combinatorial chemistry enables efficient identification of protein binder(s) from a library of interconverting compounds. The library responds to the addition of the target by amplifying the strongest binder.
Collapse
Affiliation(s)
- Milon Mondal
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
10
|
Herrmann A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem Soc Rev 2014; 43:1899-933. [PMID: 24296754 DOI: 10.1039/c3cs60336a] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems.
Collapse
Affiliation(s)
- Andreas Herrmann
- Firmenich SA, Division Recherche et Développement, Route des Jeunes 1, B. P. 239, CH-1211 Genève 8, Switzerland.
| |
Collapse
|
11
|
Misuraca MC, Moulin E, Ruff Y, Giuseppone N. Experimental and theoretical methods for the analyses of dynamic combinatorial libraries. NEW J CHEM 2014. [DOI: 10.1039/c4nj00304g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Progresses in spatial and temporal analytical tools open new avenues for the study and control of increasingly complex chemical systems.
Collapse
Affiliation(s)
- Maria Cristina Misuraca
- SAMS research group – University of Strasbourg – Institut Charles Sadron
- CNRS
- 67034 Strasbourg Cedex 2, France
| | - Emilie Moulin
- SAMS research group – University of Strasbourg – Institut Charles Sadron
- CNRS
- 67034 Strasbourg Cedex 2, France
| | - Yves Ruff
- SAMS research group – University of Strasbourg – Institut Charles Sadron
- CNRS
- 67034 Strasbourg Cedex 2, France
| | - Nicolas Giuseppone
- SAMS research group – University of Strasbourg – Institut Charles Sadron
- CNRS
- 67034 Strasbourg Cedex 2, France
| |
Collapse
|
12
|
Clipson AJ, Bhat VT, McNae I, Caniard AM, Campopiano DJ, Greaney MF. Bivalent enzyme inhibitors discovered using dynamic covalent chemistry. Chemistry 2012; 18:10562-70. [PMID: 22782854 DOI: 10.1002/chem.201201507] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Indexed: 12/25/2022]
Abstract
A bivalent dynamic covalent chemistry (DCC) system has been designed to selectively target members of the homodimeric glutathione-S-transferase (GST) enzyme family. The dynamic covalent libraries (DCLs) use aniline-catalysed acylhydrazone exchange between bivalent hydrazides and glutathione-conjugated aldehydes and the bis-hydrazides act as linkers to bridge between each glutathione binding site. The resultant DCLs were found to be compatible and highly responsive to templating with different GST isozymes, with the best results coming from the M and Schistosoma japonicum (Sj) class of GSTs, targets in cancer and tropical disease, respectively. The approach yielded compounds with selective, nanomolar affinity (K(i) =61 nM for mGSTM1-1) and demonstrates that DCC can be used to simultaneously interrogate binding sites on different subunits of a dimeric protein.
Collapse
Affiliation(s)
- Alexandra J Clipson
- School of Chemistry, University of Edinburgh, King's Buildings, West Mains Rd., Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
13
|
Raindlová V, Pohl R, Hocek M. Synthesis of aldehyde-linked nucleotides and DNA and their bioconjugations with lysine and peptides through reductive amination. Chemistry 2012; 18:4080-7. [PMID: 22337599 DOI: 10.1002/chem.201103270] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 11/06/2022]
Abstract
5-(5-Formylthienyl)-, 5-(4-formylphenyl)- and 5-(2-fluoro-5-formylphenyl)cytosine 2'-deoxyribonucleoside mono- (dC(R)MP) and triphosphates (dC(R)TP) were prepared by aqueous Suzuki-Miyaura cross-coupling of 5-iodocytosine nucleotides with the corresponding formylarylboronic acids. The dC(R)TPs were excellent substrates for DNA polymerases and were incorporated into DNA by primer extension or PCR. Reductive aminations of the model dC(R)MPs with lysine or lysine-containing tripeptide were studied and optimized. In aqueous phosphate buffer (pH 6.7) the yields of the reductive aminations with tripeptide III were up to 25 %. Bioconjugation of an aldehyde-containing DNA with a lysine-containing tripeptide was achieved through reductive amination in yields of up to 90 % in aqueous phosphate buffer.
Collapse
Affiliation(s)
- Veronika Raindlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | | | | |
Collapse
|
14
|
Kumar V, Kumar A, Diwan U, Upadhyay KK. Uncovering the true mechanism of optical detection of HSO4− in water by Schiff-base receptors – hydrolysis vs. hydrogen bonding. Chem Commun (Camb) 2012; 48:9540-2. [DOI: 10.1039/c2cc33130f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Azéma L, Bathany K, Rayner B. 2'-O-Appended polyamines that increase triple-helix-forming oligonucleotide affinity are selected by dynamic combinatorial chemistry. Chembiochem 2011; 11:2513-6. [PMID: 21104718 DOI: 10.1002/cbic.201000538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Laurent Azéma
- U869, INSERM, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | | |
Collapse
|
16
|
Caraballo R, Sakulsombat M, Ramström O. Towards Dynamic Drug Design: Identification and Optimization of β-Galactosidase Inhibitors from a Dynamic Hemithioacetal System. Chembiochem 2010; 11:1600-6. [DOI: 10.1002/cbic.201000158] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Hunt RAR, Ludlow RF, Otto S. Estimating Equilibrium Constants for Aggregation from the Product Distribution of a Dynamic Combinatorial Library. Org Lett 2009; 11:5110-3. [DOI: 10.1021/ol901656x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rosemary A. R. Hunt
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - R. Frederick Ludlow
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
18
|
Ulrich S, Buhler E, Lehn JM. Reversible constitutional switching between macrocycles and polymers induced by shape change in a dynamic covalent system. NEW J CHEM 2009. [DOI: 10.1039/b817261g] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
|
20
|
De Schutter DP, Saison D, Delvaux F, Derdelinckx G, Rock JM, Neven H, Delvaux FR. Release and evaporation of volatiles during boiling of unhopped wort. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:5172-5180. [PMID: 18547048 DOI: 10.1021/jf800610x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The release and evaporation of volatile compounds was studied during boiling of wort. The observed parameters were boiling time, boiling intensity, wort pH, and wort density. The effect of every parameter was discussed and approached chemically, with an eye on beer-aging processes. The results indicated that pH highly influenced the release of flavor compounds and that the formation of Strecker aldehydes was linear with boiling time. However, because of evaporation of volatiles, information about the applied thermal load on wort is lost when using a volatile heat load indicator. The thiobarbituric acid (TBA) method, which includes the nonvolatile precursors of volatile aging compounds, proved to be a more reliable method to determine all kinds of heat load on wort. Finally, it was discussed how the obtained insights could help to understand the mechanism of beer aging.
Collapse
Affiliation(s)
- David P De Schutter
- Centre for Malting and Brewing Science, Faculty of Bioscience Engineering, Catholic University of Leuven, Kasteelpark Arenberg 22 box 02463, 3001 Heverlee, Belgium.
| | | | | | | | | | | | | |
Collapse
|
21
|
Turega SM, Lorenz C, Sadownik JW, Philp D. Target-driven selection in a dynamic nitrone library. Chem Commun (Camb) 2008:4076-8. [PMID: 18758631 DOI: 10.1039/b805945d] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nitrones undergo dynamic exchange in chloroform at room temperature through two mechanisms-hydrolysis and recombination or hydroxylamine addition/elimination; this dynamic exchange is harnessed to select a nitrone-based bis(amidopyridine) receptor for diacids from a group of four nitrones through its binding to a glutaric acid-based target.
Collapse
Affiliation(s)
- Simon M Turega
- EaStCHEM and Centre for Biomolecular Sciences, School of Chemistry, University of St Andrews, St Andrews, Fife, UK KY16 9ST
| | | | | | | |
Collapse
|
22
|
Angelin M, Vongvilai P, Fischer A, Ramström O. Tandem driven dynamic combinatorial resolution via Henry–iminolactone rearrangement. Chem Commun (Camb) 2008:768-70. [PMID: 18478718 DOI: 10.1039/b716521h] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|