1
|
König JA, Morgenstern B, Jauch J. The Total Synthesis of Hyperfirin via a Cyclooctadiene Strategy. Org Lett 2024; 26:7083-7087. [PMID: 38996193 DOI: 10.1021/acs.orglett.4c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Polycyclic polyprenylated acylphloroglucinols (PPAPs) combine compelling structural complexity with effective biological activity. The total synthesis of Hyperfirin is reported as one linear sequence. Key to this novel modular strategy is to access the bicyclo[3.3.1]nonane-2,4,9-trione framework via transannular acylation of a decorated eight-membered ring, followed by late stage bridgehead substitution. The described route adds flexibility to PPAP construction and broadens the scope of eight-membered ring chemistry.
Collapse
Affiliation(s)
- Julien A König
- Organic Chemistry II, Saarland University, 66123 Saarbrücken, Germany
| | - Bernd Morgenstern
- Service Center X-ray Diffraction, Saarland University, 66123 Saarbrücken, Germany
| | - Johann Jauch
- Organic Chemistry II, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Roy N, Das R, Paira R, Paira P. Different routes for the construction of biologically active diversely functionalized bicyclo[3.3.1]nonanes: an exploration of new perspectives for anticancer chemotherapeutics. RSC Adv 2023; 13:22389-22480. [PMID: 37501776 PMCID: PMC10369265 DOI: 10.1039/d3ra02003g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 07/29/2023] Open
Abstract
Cancer is the second most high-morbidity disease throughout the world. From ancient days, natural products have been known to possess several biological activities, and research on natural products is one of the most enticing areas where scientists are engrossed in the extraction of valuable compounds from various plants to isolate many life-saving medicines, along with their other applications. It has been noticed that the bicyclo[3.3.1]nonane moiety is predominant in most biologically active natural products owing to its exceptional characteristics compared to others. Many derivatives of bicyclo[3.3.1]nonane are attractive to researchers for use in asymmetric catalysis or as potent anticancer entities along with their successful applications as ion receptors, metallocycles, and molecular tweezers. Therefore, this review article discusses several miscellaneous synthetic routes for the construction of bicyclo[3.3.1]nonanes and their heteroanalogues in association with the delineation of their anticancer activities with few selective compounds.
Collapse
Affiliation(s)
- Nilmadhab Roy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| | - Rishav Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| | - Rupankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| |
Collapse
|
3
|
Jang D, Choi M, Chen J, Lee C. Enantioselective Total Synthesis of (+)-Garsubellin A. Angew Chem Int Ed Engl 2021; 60:22735-22739. [PMID: 34398517 PMCID: PMC8519110 DOI: 10.1002/anie.202109193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/05/2021] [Indexed: 01/03/2023]
Abstract
Garsubellin A is a meroterpene capable of enhancing the enzyme choline acetyltransferase whose decreased level is believed to play a central role in the symptoms of Alzheimer's disease. Due to the potentially useful biological activity together with the novel bridged and fused cyclic molecular architecture, garsubellin A has garnered substantial synthetic interest, but its absolute stereostructure has been undetermined. We report here the first enantioselective total synthesis of (+)-garsubellin A. Our synthesis relies on stereoselective fashioning of a cyclohexanone framework and double conjugate addition of 1,2-ethanedithiol that promotes aldol cyclization to build the bicyclic [3.3.1] skeleton. The twelve-step, protecting group-free synthetic route has enabled the syntheses of both the natural (-)-garsubellin A and its unnatural (+)-antipode for biological evaluations.
Collapse
Affiliation(s)
- Dongseok Jang
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
| | - Minchul Choi
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
| | - Jinglong Chen
- Department of ChemistryPrinceton UniversityPrincetonNew Jersey08540USA
- Current address: College of Materials Science and EngineeringFuzhou UniversityFuzhou350108China
| | - Chulbom Lee
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
4
|
Jang D, Choi M, Chen J, Lee C. Enantioselective Total Synthesis of (+)‐Garsubellin A. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dongseok Jang
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Minchul Choi
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Jinglong Chen
- Department of Chemistry Princeton University Princeton New Jersey 08540 USA
- Current address: College of Materials Science and Engineering Fuzhou University Fuzhou 350108 China
| | - Chulbom Lee
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
5
|
Shen X, Thach DQ, Ting CP, Maimone TJ. Annulative Methods in the Synthesis of Complex Meroterpene Natural Products. Acc Chem Res 2021; 54:583-594. [PMID: 33448794 DOI: 10.1021/acs.accounts.0c00781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
From the venerable Robinson annulation to the irreplaceable Diels-Alder cycloaddition, annulation reactions have fueled the progression of the field of natural product synthesis throughout the past century. In broader terms, the ability to form a cyclic molecule directly from two or more simpler fragments has transformed virtually every aspect of the chemical sciences from the synthesis of organic materials to bioconjugation chemistry and drug discovery. In this Account, we describe the evolution of our meroterpene synthetic program over the past five years, enabled largely by the development of a tailored anionic annulation process for the synthesis of hydroxylated 1,3-cyclohexanediones from lithium enolates and the reactive β-lactone-containing feedstock chemical diketene.First, we provide details on short total syntheses of the prototypical polycyclic polyprenylated acylphloroglucinol (PPAP) natural products hyperforin and garsubellin A, which possess complex bicyclo[3.3.1]nonane architectures. Notably, these molecules have served as compelling synthetic targets for several decades and induce a number of biological effects of relevance to neuroscience and medicine. By merging our diketene annulation process with a hypervalent iodine-mediated oxidative ring expansion, bicyclo[3.3.1]nonane architectures can be easily prepared from simple 5,6-fused bicyclic diketones in only two chemical operations. Leveraging these two key chemical reactions in combination with various other stereoselective transformations allowed for these biologically active targets to be prepared in racemic form in only 10 steps.Next, we extend this strategy to the synthesis of complex fungal-derived meroterpenes generated biosynthetically from the coupling of 3,5-dimethylorsellinic acid (DMOA) and farnesyl pyrophosphate. A Ti(III)-mediated radical cyclization of a terminal epoxide was used to rapidly prepare a 6,6,5-fused tricyclic ketone which served as an input for our annulation/rearrangement process, ultimately enabling a total synthesis of protoaustinoid A, an important biosynthetic intermediate in DMOA-derived meroterpene synthesis, and its oxidation product berkeleyone A. Through a radical-based, abiotic rearrangement process, the bicyclo[3.3.1]nonane cores of these natural products could again be isomerized, resulting in the 6,5-fused ring systems of the andrastin family and ultimately delivering a total synthesis of andrastin D and preterrenoid. Notably, these isomerization transformations proved challenging when employing classic, acid-induced conditions for carbocation generation, thus highlighting the power of radical biomimicry in total synthesis. Finally, further oxidation and rearrangement allowed for access to terrenoid and the lactone-containing metabolite terretonin L.Overall, the merger of annulative diketene methodology with an oxidative rearrangement transformation has proven to be a broadly applicable strategy to synthesize bicyclo[3.3.1]nonane-containing natural products, a class of small molecules with over 1000 known members.
Collapse
Affiliation(s)
- Xingyu Shen
- Department of Chemistry, University of California−Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Danny Q. Thach
- Department of Chemistry, University of California−Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Chi P. Ting
- Department of Chemistry, University of California−Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
- Department of Chemistry, Edison-Lecks Laboratory, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Thomas J. Maimone
- Department of Chemistry, University of California−Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Fu S, Liu B. Recent progress in the synthesis of limonoids and limonoid-like natural products. Org Chem Front 2020. [DOI: 10.1039/d0qo00203h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent progress in syntheses of limonoids and limonoid-like natural products is reviewed. The current “state-of-art” advance on novel synthetic strategy are summarized and future outlook will be presented.
Collapse
Affiliation(s)
- Shaomin Fu
- Key Laboratory of Green Chemistry &Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Bo Liu
- Key Laboratory of Green Chemistry &Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| |
Collapse
|
7
|
Yang XW, Grossman RB, Xu G. Research Progress of Polycyclic Polyprenylated Acylphloroglucinols. Chem Rev 2018; 118:3508-3558. [PMID: 29461053 DOI: 10.1021/acs.chemrev.7b00551] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of hybrid natural products sharing the mevalonate/methylerythritol phosphate and polyketide biosynthetic pathways and showing considerable structure and bioactivity diversity. This review discusses the progress of research into the chemistry and biological activity of 421 natural PPAPs in the past 11 years as well as in-depth studies of biological activities and total synthesis of some PPAPs isolated before 2006. We created an online database of all PPAPs known to date at http://www.chem.uky.edu/research/grossman/PPAPs . Two subclasses of biosynthetically related metabolites, spirocyclic PPAPs with octahydrospiro[cyclohexan-1,5'-indene]-2,4,6-trione core and complicated PPAPs produced by intramolecular [4 + 2] cycloadditions of MPAPs, are brought into the PPAP family. Some PPAPs' relative or absolute configurations are reassigned or critically discussed, and the confusing trivial names in PPAPs investigations are clarified. Pharmacologic studies have revealed a new molecular mechanism whereby hyperforin and its derivatives regulate neurotransmitter levels by activating TRPC6 as well as the antitumor mechanism of garcinol and its analogues. The antineoplastic potential of some type B PPAPs such as oblongifolin C and guttiferone K has increased significantly. As a result of the recent appearances of innovative synthetic methods and strategies, the total syntheses of 22 natural PPAPs including hyperforin, garcinol, and plukenetione A have been accomplished.
Collapse
Affiliation(s)
- Xing-Wei Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| | - Robert B Grossman
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , United States
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| |
Collapse
|
8
|
Promontorio R, Richard JA, Marson C. Domino Michael-aldol annulations for the stereocontrolled synthesis of bicyclo[3.3.1]nonane and bicyclo[3.2.1]octane derivatives. RSC Adv 2016. [DOI: 10.1039/c6ra23523a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
One-pot synthesis of bicyclo compounds from cycloalkane-1,3-diones and enals.
Collapse
Affiliation(s)
- Rossella Promontorio
- Organic Chemistry
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology and Research (A*STAR)
- Singapore 138665
- Singapore
| | - Jean-Alexandre Richard
- Organic Chemistry
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology and Research (A*STAR)
- Singapore 138665
- Singapore
| | - Charles M. Marson
- Department of Chemistry
- University College London
- Christopher Ingold Laboratories
- London WC1H OAJ
- UK
| |
Collapse
|
9
|
Horeischi F, Guttroff C, Plietker B. The enantioselective total synthesis of (+)-clusianone. Chem Commun (Camb) 2015; 51:2259-61. [PMID: 25563512 DOI: 10.1039/c4cc09701g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(+)-Clusianone, an exo-type B PPAP with reported anti-HIV and chemoprotective activities, was synthesized in eleven steps with 97% ee starting from acetylacetone. An enantioselective decarboxylative Tsuji-Trost-allylation and a Ru-catalyzed ring-closing metathesis-decarboxylative allylation were used to control both diastereo- and enantioselectivity.
Collapse
Affiliation(s)
- Fiene Horeischi
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | | | | |
Collapse
|
10
|
Affiliation(s)
- Chi P. Ting
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Thomas J. Maimone
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Socolsky C, Plietker B. Total Synthesis and Absolute Configuration Assignment of MRSA Active Garcinol and Isogarcinol. Chemistry 2014; 21:3053-61. [DOI: 10.1002/chem.201406077] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 11/11/2022]
|
12
|
Bellavance G, Barriault L. Total syntheses of hyperforin and papuaforins A-C, and formal synthesis of nemorosone through a gold(I)-catalyzed carbocyclization. Angew Chem Int Ed Engl 2014; 53:6701-4. [PMID: 24838522 DOI: 10.1002/anie.201403939] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/24/2014] [Indexed: 11/07/2022]
Abstract
The remarkable biological activities of polyprenylated polycyclic acylphloroglucinols (PPAPs) combined with their highly decorated bicyclo[3.3.1]nonane-2,4,9-trione frameworks have inspired synthetic organic chemists over the last decade. The concise total syntheses of four natural products PPAPs; hyperforin and papuaforins A-C, and the formal synthesis of nemorosone are reported. Key to the realization of this strategy is the short and scalable synthesis of densely substituted PPAP scaffolds through a gold(I)-catalyzed 6-endo-dig carbocyclization of cyclic enol ethers for late-stage functionalization.
Collapse
Affiliation(s)
- Gabriel Bellavance
- Centre for Catalysis, Research and Innovation, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, On, K1N 6N5 (Canada)
| | | |
Collapse
|
13
|
Bellavance G, Barriault L. Total Syntheses of Hyperforin and Papuaforins A-C, and Formal Synthesis of Nemorosone through a Gold(I)-Catalyzed Carbocyclization. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Ruiz M, López-Alvarado P, Menéndez JC. Synthesis of a D Ring-Functionalized Derivative of the Epiwelwistatin Tetracyclic Core. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Mehta G, Bera MK. An approach toward the synthesis of PPAP natural product garsubellin A: construction of the tricyclic core. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.12.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Faber JM, Eger WA, Williams CM. Enantioselective Total Synthesis of the Mexicanolides: Khayasin, Proceranolide, and Mexicanolide. J Org Chem 2012; 77:8913-21. [DOI: 10.1021/jo301182f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan M. Faber
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Wilhelm A. Eger
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
17
|
Richard JA, Pouwer RH, Chen DYK. The chemistry of the polycyclic polyprenylated acylphloroglucinols. Angew Chem Int Ed Engl 2012; 51:4536-61. [PMID: 22461155 DOI: 10.1002/anie.201103873] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Indexed: 12/19/2022]
Abstract
With their fascinating biological profiles and stunningly complex molecular architectures, the polycyclic polyprenylated acylphloroglucinols (PPAPs) have long provided a fertile playing field for synthetic organic chemists. In particular, the recent advent of innovative synthetic methods and strategies together with C-C bond-forming reactions and asymmetric catalysis have revitalized this field tremendously. Consequently, PPAP targets which once seemed beyond reach have now been synthesized. This Review aims to highlight the recent achievements in the total synthesis of PPAPs, as well as notable methods developed for the construction of the bicyclo[3.3.1] core of these chemically and biologically intriguing molecules.
Collapse
Affiliation(s)
- Jean-Alexandre Richard
- Chemical Synthesis Laboratory@Biopolis, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, The Helios Block, no.03-08, Singapore 138667, Singapore
| | | | | |
Collapse
|
18
|
Kuznetsov NY, Maleev VI, Khrustalev VN, Mkrtchyan AF, Godovikov IA, Strelkova TV, Bubnov YN. A New Method of Synthesis of 6-Substituted Piperidine-2,4-diones from Homoallylamines. European J Org Chem 2011. [DOI: 10.1002/ejoc.201101114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Njardarson JT. Synthetic Efforts Toward [3.3.1] Bridged Bicyclic Phloroglucinol Natural Products. Tetrahedron 2011; 67:7631-7666. [PMID: 23172980 PMCID: PMC3501273 DOI: 10.1016/j.tet.2011.06.079] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jon T Njardarson
- University of Arizona, Department of Chemistry and Biochemistry, 1306 E. University Blvd., Tucson, AZ 85716, USA
| |
Collapse
|
20
|
Abe M, Saito A, Nakada M. Synthetic studies on nemorosone via enantioselective intramolecular cyclopropanation. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2009.12.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Tsukano C, R. Siegel D, J. Danishefsky S. Total Syntheses of Polycyclic Polyprenylated Acylphloroglucinols. J SYN ORG CHEM JPN 2010. [DOI: 10.5059/yukigoseikyokaishi.68.592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Affiliation(s)
- Viktor V Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| | | |
Collapse
|
23
|
Raikar SB, Nuhant P, Delpech B, Marazano C. Synthesis of Polyprenylated Benzoylphloroglucinols by Regioselective Prenylation of Phloroglucinol in an Aqueous Medium. European J Org Chem 2008. [DOI: 10.1002/ejoc.200701009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|