1
|
Kuznetsova VE, Shershov VE, Shtylev GF, Shishkin IY, Butvilovskaya VI, Stomakhin AA, Grechishnikova IV, Zasedateleva OA, Chudinov AV. Optimized Method for the Synthesis of Alkyne-Modified 2'-Deoxynucleoside Triphosphates. Molecules 2024; 29:4747. [PMID: 39407673 PMCID: PMC11477703 DOI: 10.3390/molecules29194747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
A general approach is presented for synthesizing alkyne-modified nucleoside triphosphates via the Sonogashira cross-coupling reaction of unprotected halogenated 2'-deoxynucleoside, followed by monophosphorylation and the reaction of the corresponding phosphoromorpholidate with tributylammonium pyrophosphate. A highly efficient approach for the milligram-scale synthesis of base-modified nucleoside triphosphates with an amino acid-like side chain was developed. The present chemical method outweighs the other reported methods of a base-modified nucleoside triphosphates synthesis in terms of it being a protection-free strategy, the shortening of reaction steps, and increased yields (about 70%). The resulting 8-alkynylated dATP was tested as a substrate for DNA polymerases in a primer extension reaction.
Collapse
Affiliation(s)
- Viktoriya E. Kuznetsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.E.S.); (G.F.S.); (I.Y.S.); (V.I.B.); (O.A.Z.); (A.V.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zhou H, Li Y, Gan Y, Wang R. Total RNA Synthesis and its Covalent Labeling Innovation. Top Curr Chem (Cham) 2022; 380:16. [PMID: 35218412 DOI: 10.1007/s41061-022-00371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
Abstract
RNA plays critical roles in a wide range of physiological processes. For example, it is well known that RNA plays an important role in regulating gene expression, cell proliferation, and differentiation, and many other chemical and biological processes. However, the research community still suffers from limited approaches that can be applied to readily visualize a specific RNA-of-interest (ROI). Several methods can be used to track RNAs; these rely mainly on biological properties, namely, hybridization, aptamer, reporter protein, and protein binding. With respect to covalent approaches, very few cases have been reported. Happily, several new methods for efficient labeling studies of ROIs have been demonstrated successfully in recent years. Additionally, methods employed for the detection of ROIs by RNA modifying enzymes have also proved feasible. Several approaches, namely, phosphoramidite chemistry, in vitro transcription reactions, co-transcription reactions, chemical post-modification, RNA modifying enzymes, ligation, and other methods targeted at RNA labeling have been revealed in the past decades. To illustrate the most recent achievements, this review aims to summarize the most recent research in the field of synthesis of RNAs-of-interest bearing a variety of unnatural nucleosides, the subsequent RNA labeling research via biocompatible ligation, and beyond.
Collapse
Affiliation(s)
- Hongling Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youfang Gan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Natural Product and Resource, Shanghai Institute of Organic Chemistry, Shanghai, 230030, China.
| |
Collapse
|
3
|
Huang PJ, Liu J. In vitro Selection of Chemically Modified DNAzymes. ChemistryOpen 2020; 9:1046-1059. [PMID: 33101831 PMCID: PMC7570446 DOI: 10.1002/open.202000134] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
DNAzymes are in vitro selected DNA oligonucleotides with catalytic activities. RNA cleavage is one of the most extensively studied DNAzyme reactions. To expand the chemical functionality of DNA, various chemical modifications have been made during and after selection. In this review, we summarize examples of RNA-cleaving DNAzymes and focus on those modifications introduced during in vitro selection. By incorporating various modified nucleotides via polymerase chain reaction (PCR) or primer extension, a few DNAzymes were obtained that can be specifically activated by metal ions such as Zn2+ and Hg2+. In addition, some modifications were introduced to mimic RNase A that can cleave RNA substrates in the absence of divalent metal ions. In addition, single modifications at the fixed regions of DNA libraries, especially at the cleavage junctions, have been tested, and examples of DNAzymes with phosphorothioate and histidine-glycine modified tertiary amine were successfully obtained specific for Cu2+, Cd2+, Zn2+, and Ni2+. Labeling fluorophore/quencher pair right next to the cleavage junction was also used to obtain signaling DNAzymes for detecting various metal ions and cells. Furthermore, we reviewed work on the cleavage of 2'-5' linked RNA and L-RNA substrates. Finally, applications of these modified DNAzymes as biosensors, RNases, and biochemical probes are briefly described with a few future research opportunities outlined at the end.
Collapse
Affiliation(s)
- Po‐Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntario, N2L 3G1Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntario, N2L 3G1Canada
| |
Collapse
|
4
|
Wang Y, Ng N, Liu E, Lam CH, Perrin DM. Systematic study of constraints imposed by modified nucleoside triphosphates with protein-like side chains for use in in vitro selection. Org Biomol Chem 2018; 15:610-618. [PMID: 27942671 DOI: 10.1039/c6ob02335e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Successful selection of modified DNAzymes depends on the potential for modified nucleoside triphosphates (dNTPs) to replace their unmodified counterparts in enzyme catalyzed primer extension reactions and, once incorporated, to serve as template bases for information transfer prior to PCR amplification. To date, the most densely modified DNAzymes have been selected from three modified dNTPs: 8-histaminyl-deoxyadenosine (dAimTP), 5-guanidinoallyl-deoxyuridine (dUgaTP), and 5-aminoallyl-deoxycytidine (dCaaTP) to provide several RNA-cleaving DNAzymes with greatly enhanced rate constants compared to unmodified counterparts. Here we report biophysical and enzymatic properties of these three modified nucleosides in the context of specific oligonucleotide sequences to understand how these three modified nucleobases function in combinatorial selection. The base-pairing abilities of oligonucleotides bearing one or three modified nucleosides were investigated by thermal denaturation studies and as templates for enzymatic polymerization with both modified and unmodified dNTPs. While we address certain shortcomings in the use of modified dNTPs, we also provide key evidence of faithful incorporation and enzymatic read-out, which strongly supports their continued use in in vitro selection.
Collapse
Affiliation(s)
- Yajun Wang
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| | - Nicole Ng
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| | - Erkai Liu
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| | - Curtis H Lam
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| | - David M Perrin
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| |
Collapse
|
5
|
Wang Y, Liu E, Lam CH, Perrin DM. A densely modified M 2+-independent DNAzyme that cleaves RNA efficiently with multiple catalytic turnover. Chem Sci 2018; 9:1813-1821. [PMID: 29675226 PMCID: PMC5890787 DOI: 10.1039/c7sc04491g] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Sequence-specific cleavage of RNA targets in the absence of a divalent metal cation (M2+) has been a long-standing goal in bioorganic chemistry. Herein, we report the in vitro selection of novel RNA cleaving DNAzymes that are selected using 8-histaminyl-deoxyadenosine (dAimTP), 5-guanidinoallyl-deoxyuridine (dUgaTP), and 5-aminoallyl-deoxycytidine (dCaaTP) along with dGTP. These modified dNTPs provide key functionalities reminiscent of the active sites of ribonucleases, notably RNase A. Of several such M2+-free DNAymes, DNAzyme 7-38-32 cleaves a 19 nt all-RNA substrate with multiple-turnover, under simulated physiological conditions wherein only 0.5 mM Mg2+ was present, attaining values of kcat of 1.06 min-1 and a KM of 1.37 μM corresponding to a catalytic efficiency of ∼106 M-1 min-1. Therefore, Dz7-38-32 represents a promising candidate towards the development of therapeutically efficient DNAzymes.
Collapse
Affiliation(s)
- Yajun Wang
- Chemistry Dept. , UBC , 2036 Main Mall , Vancouver , BC V6T1Z1 , Canada .
| | - Erkai Liu
- Chemistry Dept. , UBC , 2036 Main Mall , Vancouver , BC V6T1Z1 , Canada .
| | - Curtis H Lam
- Chemistry Dept. , UBC , 2036 Main Mall , Vancouver , BC V6T1Z1 , Canada .
| | - David M Perrin
- Chemistry Dept. , UBC , 2036 Main Mall , Vancouver , BC V6T1Z1 , Canada .
| |
Collapse
|
6
|
Abstract
Aptamers are nucleic acid-based scaffolds that can bind with high affinity to a variety of biological targets. Aptamers are identified from large DNA or RNA libraries through a process of directed molecular evolution (SELEX). Chemical modification of nucleic acids considerably increases the functional and structural diversity of aptamer libraries and substantially increases the affinity of the aptamers. Additionally, modified aptamers exhibit much greater resistance to biodegradation. The evolutionary selection of modified aptamers is conditioned by the possibility of the enzymatic synthesis and replication of non-natural nucleic acids. Wild-type or mutant polymerases and their non-natural nucleotide substrates that can support SELEX are highlighted in the present review. A focus is made on the efforts to find the most suitable type of nucleotide modifications and the engineering of new polymerases. Post-SELEX modification as a complementary method will be briefly considered as well.
Collapse
Affiliation(s)
- Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Edward N Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
|
8
|
Hottin A, Marx A. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases. Acc Chem Res 2016; 49:418-27. [PMID: 26947566 DOI: 10.1021/acs.accounts.5b00544] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The DNA polymerase-catalyzed incorporation of modified nucleotides is employed in many biological technologies of prime importance, such as next-generation sequencing, nucleic acid-based diagnostics, transcription analysis, and aptamer selection by systematic enrichment of ligands by exponential amplification (SELEX). Recent studies have shown that 2'-deoxynucleoside triphosphates (dNTPs) that are functionalized with modifications at the nucleobase such as dyes, affinity tags, spin and redox labels, or even oligonucleotides are substrates for DNA polymerases, even if modifications of high steric demand are used. The position at which the modification is introduced in the nucleotide has been identified as crucial for retaining substrate activity for DNA polymerases. Modifications are usually attached at the C5 position of pyrimidines and the C7 position of 7-deazapurines. Furthermore, it has been shown that the nature of the modification may impact the efficiency of incorporation of a modified nucleotide into the nascent DNA strand by a DNA polymerase. This Account places functional data obtained in studies of the incorporation of modified nucleotides by DNA polymerases in the context of recently obtained structural data. Crystal structure analysis of a Thermus aquaticus (Taq) DNA polymerase variant (namely, KlenTaq DNA polymerase) in ternary complex with primer-template DNA and several modified nucleotides provided the first structural insights into how nucleobase-modified triphosphates are tolerated. We found that bulky modifications are processed by KlenTaq DNA polymerase as a result of cavities in the protein that enable the modification to extend outside the active site. In addition, we found that the enzyme is able to adapt to different modifications in a flexible manner and adopts different amino acid side-chain conformations at the active site depending on the nature of the nucleotide modification. Different "strategies" (i.e., hydrogen bonding, cation-π interactions) enable the protein to stabilize the respective protein-substrate complex without significantly changing the overall structure of the complex. Interestingly, it was also discovered that a modified nucleotide may be more efficiently processed by KlenTaq DNA polymerase when the 3'-primer terminus is also a modified nucleotide instead of a nonmodified natural one. Indeed, the modifications of two modified nucleotides at adjacent positions can interact with each other (i.e., by π-π interactions) and thereby stabilize the enzyme-substrate complex, resulting in more efficient transformation. Several studies have indicated that archeal DNA polymerases belonging to sequence family B are better suited for the incorporation of nucleobase-modified nucleotides than enzymes from family A. However, significantly less structural data are available for family B DNA polymerases. In order to gain insights into the preference for modified substrates by members of family B, we succeeded in obtaining binary structures of 9°N and KOD DNA polymerases bound to primer-template DNA. We found that the major groove of the archeal family B DNA polymerases is better accessible than in family A DNA polymerases. This might explain the observed superiority of family B DNA polymerases in polymerizing nucleotides that bear bulky modifications located in the major groove, such as modification at C5 of pyrimidines and C7 of 7-deazapurines. Overall, this Account summarizes our recent findings providing structural insight into the mechanism by which modified nucleotides are processed by DNA polymerases. It provides guidelines for the design of modified nucleotides, thus supporting future efforts based on the acceptance of modified nucleotides by DNA polymerases.
Collapse
Affiliation(s)
- Audrey Hottin
- Department
of Chemistry and
Konstanz Research School Chemical Biology University of Konstanz Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department
of Chemistry and
Konstanz Research School Chemical Biology University of Konstanz Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
9
|
Dadová J, Cahová H, Hocek M. Polymerase Synthesis of Base-Modified DNA. MODIFIED NUCLEIC ACIDS 2016. [DOI: 10.1007/978-3-319-27111-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Renders M, Miller E, Hollenstein M, Perrin D. A method for selecting modified DNAzymes without the use of modified DNA as a template in PCR. Chem Commun (Camb) 2015; 51:1360-2. [PMID: 25487111 DOI: 10.1039/c4cc07588a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Modified DNAzyme selections typically depend on recopying catalytically active modified DNA (mDNA) into cDNA in a PCR amplification step. However mDNA is often a poor template in PCR. Herein we propose a selection method in which the catalytically active, mDNA strand is covalently linked to the unmodified DNA template strand from which it was polymerized. Following selection, the unmodified DNA template is amplified in a PCR instead of the mDNA. This method circumvents the PCR amplification of mDNA.
Collapse
Affiliation(s)
- Marleen Renders
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T 1Z1, Canada.
| | | | | | | |
Collapse
|
11
|
Abstract
To expand the chemical functionality of DNAzymes and aptamers, several new modified deoxyuridine triphosphates have been synthesized. An important precursor that enables this aim is 5-aminomethyl dUTP, whereby the pendent amine serves as a handle for further synthetic functionalization. Five functional groups were conjugated to 5-aminomethyl dUTP. Incorporation assays were performed on several templates that demand 2-5 sequential incorporation events using several commercially available DNA polymerases. It was found that Vent (exo-) DNA polymerase efficiently incorporates all five modified dUTPs. In addition, all nucleoside triphosphates were capable of supporting a double-stranded exponential PCR amplification. Modified PCR amplicons were PCR amplified into unmodified DNA and sequenced to verify that genetic information was conserved through incorporation, amplification, and reamplification. Overall these modified dUTPs represent new candidate substrates for use in selections using modified nucleotide libraries.
Collapse
|
12
|
Hollenstein M, Leumann CJ. Synthesis and biochemical characterization of tricyclothymidine triphosphate (tc-TTP). Chembiochem 2014; 15:1901-4. [PMID: 25044722 DOI: 10.1002/cbic.201402116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 01/03/2023]
Abstract
Tricyclo-DNA (tc-DNA) is a conformationally restricted oligonucleotide analogue that exhibits promising properties as a robust antisense agent. Here we report on the synthesis and biochemical characterization of tc-TTP, the triphosphate of a tc-DNA nucleoside containing the base thymine. Tc-TTP turned out to be a substrate for the Vent (exo(-) ) DNA polymerase, a polymerase that allows for multiple incorporations of tc-T nucleotides under primer extension reaction conditions. However, the substrate acceptance is rather low, as also observed for other sugar-modified analogues. Tc-TTP and tc-nucleotide-containing templates do not sustain enzymatic polymerization under physiological conditions; this indicates that tc-DNA-based antisense agents will not enter natural metabolic pathways that lead to long-term toxicity.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland).
| | | |
Collapse
|
13
|
Hollenstein M, Hipolito CJ, Lam CH, Perrin DM. Toward the combinatorial selection of chemically modified DNAzyme RNase A mimics active against all-RNA substrates. ACS COMBINATORIAL SCIENCE 2013; 15:174-82. [PMID: 23485334 DOI: 10.1021/co3001378] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The convenient use of SELEX and related combinatorial methods of in vitro selection provides a formidable gateway for the generation of DNA enzymes, especially in the context of improving their potential as gene therapeutic agents. Here, we report on the selection of DNAzyme 12-91, a modified nucleic acid catalyst adorned with imidazole, ammonium, and guanidinium groups that provide for efficient M(2+)-independent cleavage of an all-RNA target sequence (kobs = 0.06 min(-1)). While Dz12-91 was selected for intramolecular cleavage of an all-RNA target, it surprisingly cleaves a target containing a lone ribocytosine unit with even greater efficiency (kobs = 0.27 min(-1)) than Dz9-86 (kobs = 0.13 min(-1)). The sequence composition of Dz12-91 bears a marked resemblance to that of Dz9-86 (kobs = 0.0014 min(-1) with an all-RNA substrate) that was selected from the same library to cleave a target containing a single ribonucleotide. However, small alterations in the sequence composition have a profound impact on the substrate preference and catalytic properties. Indeed, Dz12-91 displays the highest known rate enhancement for the M(2+)-independent cleavage of all-RNA targets. Hence, Dz12-91 represents a step toward the generation of potentially therapeutically active DNAzymes and further underscores the usefulness of modified triphosphates in selection experiments.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T
1Z1, Canada
| | - Christopher J. Hipolito
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T
1Z1, Canada
| | - Curtis H. Lam
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T
1Z1, Canada
| | - David M. Perrin
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T
1Z1, Canada
| |
Collapse
|
14
|
Nandi B, Pattanayak S, Paul S, Sinha S. Synthesis of Nucleobase-Functionalized Morpholino-Modified Nucleoside Monomers Through Palladium-Catalyzed Cross-Coupling Reactions. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201384] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Hollenstein M. Nucleoside triphosphates--building blocks for the modification of nucleic acids. Molecules 2012; 17:13569-91. [PMID: 23154273 PMCID: PMC6268876 DOI: 10.3390/molecules171113569] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/07/2012] [Accepted: 11/09/2012] [Indexed: 11/16/2022] Open
Abstract
Nucleoside triphosphates are moldable entities that can easily be functionalized at various locations. The enzymatic polymerization of these modified triphosphate analogues represents a versatile platform for the facile and mild generation of (highly) functionalized nucleic acids. Numerous modified triphosphates have been utilized in a broad palette of applications spanning from DNA-tagging and -labeling to the generation of catalytic nucleic acids. This review will focus on the recent progress made in the synthesis of modified nucleoside triphosphates as well as on the understanding of the mechanisms underlying their polymerase acceptance. In addition, the usefulness of chemically altered dNTPs in SELEX and related methods of in vitro selection will be highlighted, with a particular emphasis on the generation of modified DNA enzymes (DNAzymes) and DNA-based aptamers.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
16
|
Hollenstein M. Synthesis of deoxynucleoside triphosphates that include proline, urea, or sulfonamide groups and their polymerase incorporation into DNA. Chemistry 2012; 18:13320-30. [PMID: 22996052 DOI: 10.1002/chem.201201662] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/21/2012] [Indexed: 01/02/2023]
Abstract
To expand the chemical array available for DNA sequences in the context of in vitro selection, I present herein the synthesis of five nucleoside triphosphate analogues containing side chains capable of organocatalysis. The synthesis involved the coupling of L-proline-containing residues (dU(tP)TP and dU(cP)TP), a dipeptide (dU(FP)TP), a urea derivative (dU(Bpu)TP), and a sulfamide residue (dU(Bs)TP) to a suitably protected common intermediate, followed by triphosphorylation. These modified dNTPs were shown to be excellent substrates for the Vent (exo(-)) and Pwo DNA polymerases, as well as the Klenow fragment of E. coli DNA polymerase I, although they were only acceptable substrates for the 9°N(m) polymerase. All of the modified dNTPs, with the exception of dU(Bpu)TP, were readily incorporated into DNA by the polymerase chain reaction (PCR). Modified oligonucleotides efficiently served as templates for PCR for the regeneration of unmodified DNA. Thermal denaturation experiments showed that these modifications are tolerated in the major groove. Overall, these heavily modified dNTPs are excellent candidates for SELEX.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
17
|
Holzberger B, Strohmeier J, Siegmund V, Diederichsen U, Marx A. Enzymatic synthesis of 8-vinyl- and 8-styryl-2'-deoxyguanosine modified DNA--novel fluorescent molecular probes. Bioorg Med Chem Lett 2012; 22:3136-9. [PMID: 22483394 DOI: 10.1016/j.bmcl.2012.03.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 12/19/2022]
Abstract
Fluorescent analogs of the natural nucleobases are widely used as molecular probes for investigating DNA hybridization and topology. In this study the guanosine analogs 8-vinyl- and 8-styryl-2'-deoxyguanosine were synthesized and converted into the corresponding 5'-triphosphates. These C8 modified nucleotides were processed by various DNA polymerases to create fluorescent DNA. Whereas the 8-styryl modified nucleotide somewhat hampers DNA synthesis 8-vinyl-2'-deoxyguanosine is processed by DNA polymerases emphasizing the broad applicability as a molecular probe for fluorescence spectroscopy.
Collapse
Affiliation(s)
- Bastian Holzberger
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
18
|
Kalachova L, Pohl R, Hocek M. Synthesis of nucleoside mono- and triphosphates bearing oligopyridine ligands, their incorporation into DNA and complexation with transition metals. Org Biomol Chem 2011; 10:49-55. [PMID: 22071986 DOI: 10.1039/c1ob06359f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Modified nucleoside mono- (dA(R)MPs and dC(R)MPs) and triphosphates (dA(R)TPs and dC(R)TPs) bearing bipyridine or terpyridine ligands attached via acetylene linker were prepared by single-step aqueous-phase Sonogashira cross-coupling of 7-iodo-7-deaza-dAMP or -dATP, and 5-iodo-dCMP or -dCTP with the corresponding bipyridine- or terpyridine-linked acetylenes. The modified dN(R)TPs were successfully incorporated into the oligonucleotides by primer extension experiment (PEX) using different DNA polymerases and the PEX products were used for post-synthetic complexation with Fe(2+).
Collapse
Affiliation(s)
- Lubica Kalachova
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610, Prague 6, Czech Republic
| | | | | |
Collapse
|
19
|
Hocek M, Fojta M. Nucleobase modification as redox DNA labelling for electrochemical detection. Chem Soc Rev 2011; 40:5802-14. [PMID: 21625726 DOI: 10.1039/c1cs15049a] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Basic aspects of DNA electrochemistry with a strong focus on the use of modified nucleobases as redox probes for electrochemical bioanalysis are reviewed. Intrinsic electrochemical properties of nucleobases in combination with artificial redox-active nucleobase modifications are frequently applied in this field. Synthetic approaches (both chemical and enzymatic) to base-modified nucleic acids are briefly summarized and their applications in redox labelling are discussed. Finally, analytical applications including DNA hybridization, primer extension, PCR, SNP typing, DNA damage and DNA-protein interaction analysis are presented (critical review, 91 references).
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Prague, Czech Republic.
| | | |
Collapse
|
20
|
Hipolito CJ, Hollenstein M, Lam CH, Perrin DM. Protein-inspired modified DNAzymes: dramatic effects of shortening side-chain length of 8-imidazolyl modified deoxyadenosines in selecting RNaseA mimicking DNAzymes. Org Biomol Chem 2011; 9:2266-73. [PMID: 21311779 DOI: 10.1039/c0ob00595a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of imidazole/amine-functionalized DNAzymes that efficiently cleave RNA independently of divalent metal cations (M(2+)) and cofactors underscores the importance of expanding the catalytic repertoire with modified nucleosides. Considerable effort has gone into defining polymerase tolerances of various modified dNTPs for synthesizing and amplifying modified DNA. While long linkers are generally found to enhance incorporation and therefore increase sequence space, shorter linkers may reduce the entropic penalty paid for orienting catalytic functionality. Catalytic enhancement ultimately depends on both the functional group and appropriate linkage to the nucleobase. Whether a shorter linker provides enough catalytic enhancement to outweigh the cost of reduced polymerizability can only be determined by the outcome of the selection. Herein, we report the selection of DNAzyme 20-49 (Dz20-49), which depends on amine, guanidine, and imidazole-modified dNTPs. In contrast to previous selections where we used dA(ime)TP (8-(4-imidazolyl)ethylamino-2'-dATP), here we used dA(imm)TP (8-(4-imidazolyl)methylamino-2'-dATP), in which the linker arm is shortened by one methylene group. Although the most active clone, Dz20-49, was absolutely dependent on the incorporation of either dA(imm)p or dA(ime)p, it catalyzed cofactor independent self-cleavage with a rate constant of 3.1 ± 0.3 × 10(-3) min(-1), a value not dissimilar from unmodified catalysts and strikingly inferior to modified catalysts selected with dA(ime)TP. These results demonstrate that very subtle differences in modified nucleotide composition may dramatically effect DNAzyme selection.
Collapse
Affiliation(s)
- Christopher J Hipolito
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
21
|
Kuwahara M, Takano Y, Kasahara Y, Nara H, Ozaki H, Sawai H, Sugiyama A, Obika S. Study on suitability of KOD DNA polymerase for enzymatic production of artificial nucleic acids using base/sugar modified nucleoside triphosphates. Molecules 2010; 15:8229-40. [PMID: 21076389 PMCID: PMC6259326 DOI: 10.3390/molecules15118229] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/06/2010] [Accepted: 11/10/2010] [Indexed: 01/26/2023] Open
Abstract
Recently, KOD and its related DNA polymerases have been used for preparing various modified nucleic acids, including not only base-modified nucleic acids, but also sugar-modified ones, such as bridged/locked nucleic acid (BNA/LNA) which would be promising candidates for nucleic acid drugs. However, thus far, reasons for the effectiveness of KOD DNA polymerase for such purposes have not been clearly elucidated. Therefore, using mutated KOD DNA polymerases, we studied here their catalytic properties upon enzymatic incorporation of nucleotide analogues with base/sugar modifications. Experimental data indicate that their characteristic kinetic properties enabled incorporation of various modified nucleotides. Among those KOD mutants, one achieved efficient successive incorporation of bridged nucleotides with a 2′-ONHCH2CH2-4′ linkage. In this study, the characteristic kinetic properties of KOD DNA polymerase for modified nucleoside triphosphates were shown, and the effectiveness of genetic engineering in improvement of the enzyme for modified nucleotide polymerization has been demonstrated.
Collapse
Affiliation(s)
- Masayasu Kuwahara
- Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ikonen S, Macícková-Cahová H, Pohl R, Sanda M, Hocek M. Synthesis of nucleoside and nucleotide conjugates of bile acids, and polymerase construction of bile acid-functionalized DNA. Org Biomol Chem 2010; 8:1194-201. [PMID: 20165813 DOI: 10.1039/b924072a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aqueous Sonogashira cross-coupling reactions of 5-iodopyrimidine or 7-iodo-7-deazaadenine nucleosides with bile acid-derived terminal acetylenes linked via an ester or amide tether gave the corresponding bile acid-nucleoside conjugates. Analogous reactions of halogenated nucleoside triphosphates gave directly bile acid-modified dNTPs. Enzymatic incorporation of these modified nucleotides to DNA was successfully performed using Phusion polymerase for primer extension. One of the dNTPs (dCTP bearing cholic acid) was also efficient for PCR amplification.
Collapse
Affiliation(s)
- Satu Ikonen
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610, Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
23
|
Macíčková-Cahová H, Hocek M. Cleavage of adenine-modified functionalized DNA by type II restriction endonucleases. Nucleic Acids Res 2009; 37:7612-22. [PMID: 19820117 PMCID: PMC2794189 DOI: 10.1093/nar/gkp845] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/22/2009] [Accepted: 09/22/2009] [Indexed: 12/31/2022] Open
Abstract
A set of 6 base-modified 2'-deoxyadenosine derivatives was incorporated to diverse DNA sequences by primer extension using Vent (exo-) polymerase and the influence of the modification on cleavage by diverse restriction endonucleases was studied. While 8-substituted (Br or methyl) adenine derivatives were well tolerated by the restriction enzymes and the corresponding sequences were cleaved, the presence of 7-substituted 7-deazaadenine in the recognition sequence resulted in blocking of cleavage by some enzymes depending on the nature and size of the 7-substituent. All sequences with modifications outside of the recognition sequence were perfectly cleaved by all the restriction enzymes. The results are useful both for protection of some sequences from cleavage and for manipulation of functionalized DNA by restriction cleavage.
Collapse
Affiliation(s)
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610, Prague 6, Czech Republic
| |
Collapse
|
24
|
Loakes D, Holliger P. Polymerase engineering: towards the encoded synthesis of unnatural biopolymers. Chem Commun (Camb) 2009:4619-31. [PMID: 19641798 DOI: 10.1039/b903307f] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA is not only a repository of genetic information for life, it is also a unique polymer with remarkable properties: it associates according to well-defined rules, it can be assembled into diverse nanostructures of defined geometry, it can be evolved to bind ligands and catalyse chemical reactions and it can serve as a supramolecular scaffold to arrange chemical groups in space. However, its chemical makeup is rather uniform and the physicochemical properties of the four canonical bases only span a narrow range. Much wider chemical diversity is accessible through solid-phase synthesis but oligomers are limited to <100 nucleotides and variations in chemistry can usually not be replicated and thus are not amenable to evolution. Recent advances in nucleic acid chemistry and polymerase engineering promise to bring the synthesis, replication and ultimately evolution of nucleic acid polymers with greatly expanded chemical diversity within our reach.
Collapse
Affiliation(s)
- David Loakes
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, Cambridgeshire, UKCB2 0QH
| | | |
Collapse
|
25
|
Riedl J, Horáková P, Šebest P, Pohl R, Havran L, Fojta M, Hocek M. Tetrathiafulvalene-Labelled Nucleosides and Nucleoside Triphosphates: Synthesis, Electrochemistry and the Scope of Their Polymerase Incorporation into DNA. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900392] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Hollenstein M, Hipolito CJ, Lam CH, Perrin DM. A self-cleaving DNA enzyme modified with amines, guanidines and imidazoles operates independently of divalent metal cations (M2+). Nucleic Acids Res 2009; 37:1638-49. [PMID: 19153138 PMCID: PMC2655665 DOI: 10.1093/nar/gkn1070] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 12/04/2022] Open
Abstract
The selection of modified DNAzymes represents an important endeavor in expanding the chemical and catalytic properties of catalytic nucleic acids. Few examples of such exist and to date, there is no example where three different modified bases have been simultaneously incorporated for catalytic activity. Herein, dCTP, dATP and dUTP bearing, respectively, a cationic amine, an imidazole and a cationic guanidine, were enzymatically polymerized on a DNA template for the selection of a highly functionalized DNAzyme, called DNAzyme 9-86, that catalyzed (M(2+))-independent self-cleavage under physiological conditions at a single ribo(cytosine)phosphodiester linkage with a rate constant of (0.134 +/- 0.026) min(-1). A pH rate profile analysis revealed pK(a)'s of 7.4 and 8.1, consistent with both general acid and base catalysis. The presence of guanidinium cations permits cleavage at significantly higher temperatures than previously observed for DNAzymes with only amines and imidazoles. Qualitatively, DNAzyme 9-86 presents an unprecedented ensemble of synthetic functionalities while quantitatively it expresses one of the highest reported values for any self-cleaving nucleic acid when investigated under M(2+)-free conditions at 37 degrees C.
Collapse
Affiliation(s)
| | | | | | - David M. Perrin
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T 1Z1, Canada
| |
Collapse
|
27
|
Abstract
The enzymatic incorporation of a series of emissive pyrimidine analogues into RNA oligonucleotides is explored. T7 RNA polymerase is challenged with accepting three non-natural, yet related, triphosphates as substrates and incorporating them into diverse RNA transcripts. The three ribonucleoside triphosphates differ only in the modification of their uracil nucleus and include a thieno[3,2-d]pyrimidine nucleoside, a thieno[3,4-d]pyrimidine derivative, and a uridine containing a thiophene ring conjugated at its 5-position. All thiophene-containing uridine triphosphates (UTPs) get incorporated into RNA oligonucleotides at positions that are remote to the promoter, although the yields of the transcripts vary compared with the transcript obtained with only native triphosphates. Among the three derivatives, the 5-modified UTP is found to be the most "polymerase-friendly" and is well accommodated by T7 RNA polymerase. Although the fused thiophene analogues cannot be incorporated next to the promoter region, the 5-modified non-natural UTP gets incorporated near the promoter (albeit in relatively low yields) and even in multiple copies. Labeling experiments shed light on the mediocre incorporation of the fused analogues, suggesting the enzyme frequently pauses at the incorporation position. When incorporation does take place, the enzyme fails to elongate the modified oligonucleotide and yields aborted transcripts. Taken together, these results highlight the versatility and robustness, as well as the scope and limitation, of T7 RNA polymerase in accepting and incorporating reporter nucleotides into modified RNA transcripts.
Collapse
Affiliation(s)
- Seergazhi G Srivatsan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
28
|
Cahová H, Pohl R, Bednárová L, Nováková K, Cvacka J, Hocek M. Synthesis of 8-bromo-, 8-methyl- and 8-phenyl-dATP and their polymerase incorporation into DNA. Org Biomol Chem 2008; 6:3657-60. [PMID: 18843392 DOI: 10.1039/b811935j] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
dATP derivatives bearing Br, Me or Ph groups in position 8 were prepared and tested as substrates for DNA polymerases to show that 8-Br-dATP and 8-Me-dATP were efficiently incorporated, while 8-Ph-dATP was a poor substrate due to its bulky Ph group.
Collapse
Affiliation(s)
- Hana Cahová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610, Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|