1
|
Chrzanowska M, Grajewska A, Rozwadowska MD. Diastereoselective Synthesis of (–)-6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic Acid via Morpholinone Derivatives. Molecules 2023; 28:molecules28073200. [PMID: 37049962 PMCID: PMC10095930 DOI: 10.3390/molecules28073200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
A simple and convenient synthesis of (–)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid is described, applying a combination of two synthetic methods: the Petasis reaction and Pomeranz–Fritsch–Bobbitt cyclization. The diastereomeric morpholinone derivative N-(2,2-diethoxyethyl)-3-(3,4-dimethoxyphenyl)-5-phenyl-1,4-oxazin-2-one formed in the Petasis reaction was further transformed into 1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid via Pomeranz–Fritsch–Bobbitt cyclization, a classical method of synthesis leading to the tetrahydroisoquinoline core. We review important examples of applications of the Pomeranz–Fritsch process and its modifications in the synthesis of chiral tetrahydroisoquinoline derivatives that have been published in the past two decades.
Collapse
Affiliation(s)
- Maria Chrzanowska
- Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Agnieszka Grajewska
- Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Maria D. Rozwadowska
- Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Rhodium-Catalyzed Aerobic Conversion of 2-Diazo-1,3-dicarbonyls to Vicinal Tricarbonyl Compounds and Their In-Situ Stability Toward Oxidative Degradation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Ju S, Qian M, Xu G, Yang L, Wu J. Chemoenzymatic Approach to (
S
)‐1,2,3,4‐Tetrahydroisoquinoline Carboxylic Acids Employing D‐Amino Acid Oxidase. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuyun Ju
- Institute of Bioengineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 People's Republic of China
| | - Mingxin Qian
- Tongli Biomedical Co., Ltd 1# Guotai North Road, Zhangjiagang Economic Development Zone Zhangjiagang 215600, Jiangsu People's Republic of China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 People's Republic of China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 People's Republic of China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 People's Republic of China
| |
Collapse
|
4
|
Huang J, Xu Y, Zhang Y, Sun A, Hu Y. Utilization of one novel deep-sea microbial protease sin3406-1 in the preparation of ethyl (S)-3-hydroxybutyrate through kinetic resolution. World J Microbiol Biotechnol 2018; 34:124. [PMID: 30083971 DOI: 10.1007/s11274-018-2513-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
One novel protease sin3406-1 was identified from Streptomyces niveus SCSIO 3406, which was isolated from the deep sea of the South China Sea, and heterologously expressed in E. coli BL21(DE3). Protease sin3406-1 was further used as a green biocatalyst in the kinetic resolution of racemic ethyl-3-hydroxybutyrate. After careful process optimization, chiral product ethyl (S)-3-hydroxybutyrate was generated with an enantiomeric excess of over 99% and a conversion rate of up to 50% through direct hydrolysis of inexpensive racemic ethyl-3-hydroxybutyrate catalyzed by sin3406-1. Interestingly, protease sin3406-1 exhibited the same enantio-preference as that of esterase PHE21 during the asymmetric hydrolysis of the ester bonds of racemic ethyl-3-hydroxybutyrate. Through mutation studies and molecular docking, we also demonstrated that the four residues close to the catalytic center, S85, A86, Q87 and Y254, played key roles in both the hydrolytic activity and the enantioselectivity of protease sin3406-1, possibly through forming hydrogen bonds between the enzyme and the substrates. Deep-sea microbial proteases represented by sin3406-1 are new contributions to the biocatalyst library for the preparation of valuable chiral drug intermediates and chemicals through enzymatic kinetic resolution.
Collapse
Affiliation(s)
- Jinlong Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,College of Life Science, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Yongkai Xu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China
| | - Yun Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Aijun Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Yunfeng Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China. .,Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China. .,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Megyesi R, Mándi A, Kurtán T, Forró E, Fülöp F. Dynamic Kinetic Resolution of Ethyl 1,2,3,4-Tetrahydro-β-carboline-1-carboxylate: Use of Different Hydrolases for Stereocomplementary Processes. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rita Megyesi
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
| | - Attila Mándi
- Department of Organic Chemistry; University of Debrecen; P. O. Box 400 4002 Debrecen Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry; University of Debrecen; P. O. Box 400 4002 Debrecen Hungary
| | - Enikő Forró
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
- MTA-SZTE Stereochemistry Research Group; Hungarian Academy of Sciences; Eötvös u. 6 6720 Szeged Hungary
| |
Collapse
|
6
|
Bułyszko I, Chrzanowska M, Grajewska A, Rozwadowska MD. Synthesis of (+)-6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic Acid, a Diastereoselective Approach. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403218] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
|
8
|
Schönstein L, Forró E, Fülöp F. Continuous-flow enzymatic resolution strategy for the acylation of amino alcohols with a remote stereogenic centre: synthesis of calycotomine enantiomers. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Chrzanowska M, Grajewska A, Meissner Z, Rozwadowska M, Wiatrowska I. A concise synthesis of tetrahydroisoquinoline-1-carboxylic acids using a Petasis reaction and Pomeranz–Fritsch–Bobbitt cyclization sequence. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
D. Rozwadowska M, Chrzanowska M, Grajewska A. Synthesis of Calycotomine and N-Methylcalycotomine Using a Petasis Reaction — Pomeranz-Fritsch-Bobbitt Cyclization Sequence. HETEROCYCLES 2012. [DOI: 10.3987/com-12-s(n)59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
|
12
|
Busto E, Gotor-Fernández V, Gotor V. Hydrolases in the Stereoselective Synthesis of N-Heterocyclic Amines and Amino Acid Derivatives. Chem Rev 2011; 111:3998-4035. [DOI: 10.1021/cr100287w] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eduardo Busto
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, E-33006, Spain
| | - Vicente Gotor-Fernández
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, E-33006, Spain
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, E-33006, Spain
| |
Collapse
|
13
|
Li XG, Rantapaju M, Kanerva LT. Candida antarctica Lipase B in a Chemoenzymatic Route to Cyclic α-Quaternary α-Amino Acid Enantiomers. European J Org Chem 2011. [DOI: 10.1002/ejoc.201001575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
|
15
|
Resolution of N-protected amino acid esters using whole cells of Candida parapsilosis ATCC 7330. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
|
17
|
Paál TA, Forró E, Fülöp F, Liljeblad A, Kanerva LT. Lipase-catalyzed kinetic resolution of 1,2,3,4-tetrahydroisoquinoline-1-acetic acid esters. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.tetasy.2008.11.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|