Kirita K, Matsumoto H, Endo G, Inoue K, Hosokawa S. Total syntheses of borolithochromes H1, H2, I1, and I2.
Biosci Biotechnol Biochem 2024;
88:1144-1154. [PMID:
39054274 DOI:
10.1093/bbb/zbae104]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Total syntheses of borolithochromes H1, H2, I1, and I2, the red pigments isolated from fossils of Jurassic putative red alga Solenopora jurassica, have been achieved. The naphthoquinone possessing a chiral sec-butyl side chain has been synthesized from (S)-2-methylbutanol. The Diels-Alder reaction of the chiral naphthoquinone and the previously reported diene was followed by one pot S-methylation/intramolecular Corey-Chaykovsky reaction/epoxide rearrangement to provide the benzo[gh]tetraphene skeleton. Complexation of the resulting ligand with trimethyl borate and the following O-demethylation furnished a 1:1 mixture of borolithochromes I1 and I2, which were separated by HPLC using CHIRALPAK IC® to afford optically pure borolithochromes I1 (6) and I2 (7). On the other hand, borolithochromes H1 and H2 were not separated by HPLC in our laboratory. Fortunately, the mixture of the methyl ethers of borolithochromes H1 and H2 were separated and O-demethylation with magnesium iodide furnished optically pure borolithochromes H1 (4) and H2 (5).
Collapse