1
|
Xie H, Wang S, Shu XZ. C-OH Bond Activation for Stereoselective Radical C-Glycosylation of Native Saccharides. J Am Chem Soc 2024. [PMID: 39545714 DOI: 10.1021/jacs.4c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Radical C-glycosylation presents a flexible and efficient method for synthesizing C-glycosides. Existing methods always require multistep processes for generating anomeric radicals. In this study, we introduce a streamlined approach to produce anomeric radicals through direct C-OH bond homolysis of unmodified saccharides, eliminating the need for protection, deprotection, or activation steps. These anomeric radicals selectively couple with activated alkenes, yielding C-glycosylation products with high stereoselectivity (>20:1). This method is applicable to a variety of native monosaccharides, such as l-arabinose, d-arabinose, d-xylose, l-xylose, d-galactose, β-d-glucose, α-d-glucose, and l-ribose, as well as oligosaccharides including α-lactose, d-(+)-melibiose, and acarbose. We also extend this approach to C-glycosylation of amino acid and peptide derivatives, and demonstrate a streamlined synthesis of an anti-inflammatory agent.
Collapse
Affiliation(s)
- Hao Xie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Sheng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
2
|
He JB, Wang Y, Zhang GH, Wang JA, Chen YS, Jia J, Lv XM, Ren FC, Chen B, Cao YR. Secondary metabolites from the Actinomadura sp. and their cytotoxic activity. Fitoterapia 2024; 173:105806. [PMID: 38181893 DOI: 10.1016/j.fitote.2023.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Actinomadura sp., which is usually found in muddy habitats, produces various secondary metabolites with biological activities. In this study, five new compounds named formosensin A (1), formosensin B (2), oxanthroquinone-3-O-α-d-mannose (8), oxanthromicin A (9), and oxanthromicin B (10) were isolated from the culture of Actinomadura sp. together with five known compounds (3-7). Their structures were elucidated by extensive spectroscopic methods including NMR and MS. In particular, the absolute configurations of compounds 1 and 2 were determined using computational methods. Moreover, compounds 1-2 and 8-10 were screened for cytotoxic activity using a panel of human tumor cell lines. Compound 9 induced significant cytotoxicity in five human tumor cell lines (HL-60, A-549, SMMC-7721, MCF-7, and SW480) with IC50 values of 8.7, 17.5, 15.0, 17.8, and 14.6 μM, respectively. These findings suggested that compound 9 could provide therapeutic benefits in the treatment of tumor-related diseases.
Collapse
Affiliation(s)
- Jiang-Bo He
- School of Medicine, Kunming University, Kunming 650214, PR China
| | - Ying Wang
- School of Medicine, Kunming University, Kunming 650214, PR China
| | - Gao-Hong Zhang
- School of Medicine, Kunming University, Kunming 650214, PR China
| | - Ji-Ai Wang
- School of Medicine, Kunming University, Kunming 650214, PR China
| | - Yi-Shu Chen
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, PR China
| | - Jing Jia
- School of Medicine, Kunming University, Kunming 650214, PR China
| | - Xiao-Man Lv
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, PR China
| | - Fu-Cai Ren
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Bing Chen
- School of Medicine, Kunming University, Kunming 650214, PR China.
| | - Yan-Ru Cao
- School of Medicine, Kunming University, Kunming 650214, PR China.
| |
Collapse
|
3
|
Scheibelberger L, Stankovic T, Pühringer M, Kählig H, Balber T, Patronas E, Rampler E, Mitterhauser M, Haschemi A, Pallitsch K. Synthesis of 4-Deoxy-4-Fluoro-d-Sedoheptulose: A Promising New Sugar to Apply the Principle of Metabolic Trapping. Chemistry 2023; 29:e202302277. [PMID: 37552007 PMCID: PMC10946558 DOI: 10.1002/chem.202302277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
Fluorinated carbohydrates are important tools for understanding the deregulation of metabolic fluxes and pathways. Fluorinating specific positions within the sugar scaffold can lead to enhanced metabolic stability and subsequent metabolic trapping in cells. This principle has, however, never been applied to study the metabolism of the rare sugars of the pentose phosphate pathway (PPP). In this study, two fluorinated derivatives of d-sedoheptulose were designed and synthesized: 4-deoxy-4-fluoro-d-sedoheptulose (4DFS) and 3-deoxy-3-fluoro-d-sedoheptulose (3DFS). Both sugars are taken up by human fibroblasts but only 4DFS is phosphorylated. Fluorination of d-sedoheptulose at C-4 effectively halts the enzymatic degradation by transaldolase and transketolase. 4DFS thus has a high potential as a new PPP imaging probe based on the principle of metabolic trapping. Therefore, the synthesis of potential radiolabeling precursors for 4DFS for future radiofluorinations with fluorine-18 is presented.
Collapse
Affiliation(s)
- Lukas Scheibelberger
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Straße 421090ViennaAustria
| | - Toda Stankovic
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Marlene Pühringer
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Straße 421090ViennaAustria
- Institute of Analytical ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Hanspeter Kählig
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Theresa Balber
- Division of Nuclear MedicineDepartment of Biomedical Imaging and Image-guided TherapyMedical University of ViennaWähringer Gürtel 18–201090ViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsWähringer Gürtel 18–201090ViennaAustria
| | - Eva‐Maria Patronas
- Division of Nuclear MedicineDepartment of Biomedical Imaging and Image-guided TherapyMedical University of ViennaWähringer Gürtel 18–201090ViennaAustria
- Division of Pharmaceutical Technology and BiopharmaceuticsDepartment of Pharmaceutical SciencesUniversity of Vienna, UZAIIJosef-Holaubek-Platz 21090ViennaAustria
| | - Evelyn Rampler
- Institute of Analytical ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Markus Mitterhauser
- Division of Nuclear MedicineDepartment of Biomedical Imaging and Image-guided TherapyMedical University of ViennaWähringer Gürtel 18–201090ViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsWähringer Gürtel 18–201090ViennaAustria
- Institute of Inorganic ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Arvand Haschemi
- Department of Laboratory MedicineMedical University of ViennaWähringer Gürtel 18–201090ViennaAustria
| | - Katharina Pallitsch
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| |
Collapse
|
4
|
Romeo JR, Lucera JD, Jensen D, Davis LM, Bennett CS. Application of Redox-Active Ester Catalysis to the Synthesis of Pyranose Alkyl C-Glycosides. Org Lett 2023; 25:3760-3765. [PMID: 37171292 DOI: 10.1021/acs.orglett.3c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The direct coupling of shelf-stable, tetrachloro-N-hydroxyphthalimide ester (TCNHPI) glycosyl donors with a variety of alkylzinc reagents under redox catalysis is described. Alkyl C-glycosides are formed directly by a decarboxylative, Negishi-type process in 31-73% yields without the need for photocatalytic activation or additional reductants. Extension of this approach to the coupling of TCNHPI donors with stereodefined α-alkoxy furan-containing alkylzinc halides enabled de novo synthesis of methylene-linked exo-C-disaccharides via an Achmatowicz rearrangement.
Collapse
Affiliation(s)
- Joseph R Romeo
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jon D Lucera
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Drew Jensen
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Luke M Davis
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Clay S Bennett
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
5
|
Upadhyaya K, Osorio-Morales N, Crich D. Can Side-Chain Conformation and Glycosylation Selectivity of Hexopyranosyl Donors Be Controlled with a Dummy Ligand? J Org Chem 2023; 88:3678-3696. [PMID: 36877600 PMCID: PMC10028612 DOI: 10.1021/acs.joc.2c02889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The use of a phenylthio group (SPh) as a dummy ligand at the 6-position to control the side-chain conformation of a series of hexopyranosyl donors is described. The SPh group limits side-chain conformation in a configuration-specific manner, which parallels that seen in the heptopyranosides, and so influences glycosylation selectivity. With both d- and l-glycero-d-galacto-configured donors, the equatorial products are highly favored as they are with an l-glycero-d-gluco donor. For the d-glycero-d-gluco donor, on the other hand, modest axial selectivity is observed. Selectivity patterns are discussed in terms of the side-chain conformation of the donors in combination with the electron-withdrawing effect of the thioacetal group. After glycosylation, removal of the thiophenyl moiety and hydrogenolytic deprotection is achieved in a single step with Raney nickel.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Nicolas Osorio-Morales
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Molla MR, Thakur R. Cyanomethyl (CNMe) ether: an orthogonal protecting group for saccharides. Org Biomol Chem 2022; 20:4030-4037. [PMID: 35506910 DOI: 10.1039/d2ob00338d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Logical manipulation of protecting groups is one of the vital strategies involved in the synthesis of complex oligosachharides. As opposed to the robust permanent protecting groups, the chemoselective protection-deprotection processes on orthogonal protecting groups have facilitated the synthesis of the target molecules with higher effeciency. While the derivatives of benzyl ethers are the most popular orthogonal ether based protecting groups for hydroxyls, the exploration of methyl ethers for similar synthetic application is much limited. We herein report cyanomethyl (CNMe) ether as a readily synthesized orthogonal protecting group for saccharides. The ether moiety was rapidly removed under Na-naphthalenide conditions in good to excellent yields and was found to be compatible with other well-known benzyl/methyl/silyl ether and acetal protecting groups. Additionally, the CNMe group was observed to be tolerant to standard reagents used for the deprotection of ether, ester and acetal protecting groups. The protection and deprotection steps remained unaffected by the position of hydroxyl, the configuration of monosaccharides or the presence of olefins in the skeleton.
Collapse
Affiliation(s)
| | - Rima Thakur
- National Institute of Technology Patna, Ashok Rajpath, Patna 800005, India.
| |
Collapse
|
7
|
Ding Y, Vara Prasad CVNS, Wang B. Glycosylation on Unprotected or Partially Protected Acceptors. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yili Ding
- Life Science Department; Foshan University; 528000 Foshan Guangdong China
| | | | - Bingyun Wang
- Life Science Department; Foshan University; 528000 Foshan Guangdong China
| |
Collapse
|
8
|
Wang L, Liang T, Fang Z. Chemical synthesis and preliminary biological evaluation of C-6-O-methyl-1-deoxynojirimycin as a potent α-glucosidase inhibitor. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1700995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lin Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, P.R. China
| | - Tingting Liang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Zhijie Fang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, P.R. China
| |
Collapse
|
9
|
Meng S, Bhetuwal BR, Acharya PP, Zhu J. Facile Synthesis of Sugar Lactols via Bromine-Mediated Oxidation of Thioglycosides. J Carbohydr Chem 2019; 38:109-126. [PMID: 31396001 DOI: 10.1080/07328303.2019.1581889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Synthesis of a variety of sugar lactols (hemiacetals) has been accomplished in moderate to excellent yields by using bromine-mediated oxidation of thioglycosides. It was found that acetonitrile is the optimal solvent for this oxidation reaction. This approach involving bromine as oxidant is superior to that using N-bromosuccimide (NBS) which produces byproduct succinimide often difficult to separate from the lactol products.
Collapse
Affiliation(s)
- Shuai Meng
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Bishwa Raj Bhetuwal
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Padam P Acharya
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
10
|
Glenister A, Simone MI, Hambley TW. A Warburg effect targeting vector designed to increase the uptake of compounds by cancer cells demonstrates glucose and hypoxia dependent uptake. PLoS One 2019; 14:e0217712. [PMID: 31306426 PMCID: PMC6629077 DOI: 10.1371/journal.pone.0217712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/16/2019] [Indexed: 11/24/2022] Open
Abstract
Glycoconjugation to target the Warburg effect provides the potential to enhance selective uptake of anticancer or imaging agents by cancer cells. A Warburg effect targeting group, rationally designed to facilitate uptake by glucose transporters and promote cellular accumulation due to phosphorylation by hexokinase (HK), has been synthesised. This targeting group, the C2 modified glucose analogue 2-(2-[2-(2-aminoethoxy)ethoxy]ethoxy)-D-glucose, has been conjugated to the fluorophore nitrobenzoxadiazole to evaluate its effect on uptake and accumulation in cancer cells. The targeting vector has demonstrated inhibition of glucose phosphorylation by HK, indicating its interaction with the enzyme and thereby confirming the potential to facilitate an intracellular trapping mechanism for compounds it is conjugated with. The cellular uptake of the fluorescent analogue is dependent on the glucose concentration and is so to a greater extent than is that of the widely used fluorescent glucose analogue, 2-NBDG. It also demonstrates selective uptake in the hypoxic regions of 3D spheroid tumour models whereas 2-NBDG is distributed primarily through the normoxic regions of the spheroid. The increased selectivity is consistent with the blocking of alternative uptake pathways.
Collapse
Affiliation(s)
- Alexandra Glenister
- School of Chemistry, University of Sydney, Camperdown, New South Wales, Australia
| | - Michela I. Simone
- Discipline of Chemistry, Priority Research Centre for Chemical Biology & Clinical Pharmacology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Trevor W. Hambley
- School of Chemistry, University of Sydney, Camperdown, New South Wales, Australia
- * E-mail:
| |
Collapse
|
11
|
Ligand-controlled, transition-metal catalyzed site-selective modification of glycosides. Carbohydr Res 2019; 474:16-33. [DOI: 10.1016/j.carres.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
|
12
|
Szőllősi G, Kolcsár VJ. Highly Enantioselective Transfer Hydrogenation of Prochiral Ketones Using Ru(II)-Chitosan Catalyst in Aqueous Media. ChemCatChem 2018. [DOI: 10.1002/cctc.201801602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- György Szőllősi
- MTA-SZTE Stereochemistry Research Group; University of Szeged; Dóm tér 8 Szeged 6720 Hungary
- University of Szeged Interdisciplinary Excellence Centre Institute of Pharmaceutical Chemistry; Eötvös u. 6 Szeged 6720 Hungary)
| | | |
Collapse
|
13
|
Arai MA, Yamaguchi Y, Ishibashi M. Total synthesis of agalloside, isolated from Aquilaria agallocha, by the 5-O-glycosylation of flavan. Org Biomol Chem 2018; 15:5025-5032. [PMID: 28569322 DOI: 10.1039/c7ob01004d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Agalloside (1) is a neural stem cell differentiation activator isolated from Aquilaria agallocha by our group using Hes1 immobilized beads. We conducted the first total synthesis of agalloside (1) via the 5-O-glycosylation of flavan 25 using glycosyl fluoride 20 in the presence of BF3·Et2O. Subsequent oxidation with DDQ to flavanone 2 and deprotection successively provided agalloside (1). This synthetic strategy holds promise for use in the synthesis of 5-O-glycosylated flavonoids. The synthesized agalloside (1) accelerated neural stem cell differentiation, which is a result comparable to that for the naturally occurring compound 1.
Collapse
Affiliation(s)
- Midori A Arai
- Department of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| | | | | |
Collapse
|
14
|
Shang W, Mou ZD, Tang H, Zhang X, Liu J, Fu Z, Niu D. Site-Selective O-Arylation of Glycosides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Weidong Shang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Ze-Dong Mou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Hua Tang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Zhengyan Fu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
15
|
Shang W, Mou ZD, Tang H, Zhang X, Liu J, Fu Z, Niu D. Site-Selective O-Arylation of Glycosides. Angew Chem Int Ed Engl 2017; 57:314-318. [PMID: 29125221 DOI: 10.1002/anie.201710310] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Weidong Shang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Ze-Dong Mou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Hua Tang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Zhengyan Fu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
16
|
Wang DD, Li XS, Bao YZ, Liu J, Zhang XK, Yao XS, Sun XL, Tang JS. Synthesis of MeON-neoglycosides of digoxigenin with 6-deoxy- and 2,6-dideoxy- d -glucose derivatives and their anticancer activity. Bioorg Med Chem Lett 2017. [DOI: 10.1016/j.bmcl.2017.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Meng B, Wang J, Wang Q, Serianni AS, Pan Q. Rapid assembly of branched mannose oligosaccharides through consecutive regioselective glycosylation: A convergent and efficient strategy. Tetrahedron 2017; 73:3932-3938. [PMID: 29104323 PMCID: PMC5667659 DOI: 10.1016/j.tet.2017.05.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A convergent and efficient strategy for the synthesis of high-mannose oligosaccharides is described wherein regioselective glycosylations between trichloroacetimidate donors and partially protected acceptors are employed to reduce the number of protection-deprotection steps. Two representative branched mannose oligosaccharides, a mannose heptasaccharide (Man7) and a mannose nonasaccharide (Man9) were constructed via (4+3) and (5+4) glycosylations, respectively. These mannose-containing oligosaccharides were obtained in nine steps in ~25% overall yield and >98% purity on 60-70 mg scales to demonstrate the effectiveness of the strategy.
Collapse
Affiliation(s)
- Bo Meng
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, Indiana 46617-2701, USA
| | - Jun Wang
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, Indiana 46617-2701, USA
| | - Qianli Wang
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, Indiana 46617-2701, USA
| | - Anthony S Serianni
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, Indiana 46617-2701, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
| | - Qingfeng Pan
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, Indiana 46617-2701, USA
| |
Collapse
|
18
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
19
|
Traboni S, Liccardo F, Bedini E, Giordano M, Iadonisi A. Solvent-free synthesis of glycosyl chlorides based on the triphenyl phosphine/hexachloroacetone system. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.03.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Affiliation(s)
- Wei-Chih Wei
- Department of Chemistry; Fu Jen Catholic University; 24205 New Taipei City Taiwan
| | - Che-Chien Chang
- Department of Chemistry; Fu Jen Catholic University; 24205 New Taipei City Taiwan
| |
Collapse
|
21
|
Park Y, Harper KC, Kuhl N, Kwan EE, Liu RY, Jacobsen EN. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions. Science 2017; 355:162-166. [PMID: 28082586 PMCID: PMC5671764 DOI: 10.1126/science.aal1875] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023]
Abstract
Carbohydrates are involved in nearly all aspects of biochemistry, but their complex chemical structures present long-standing practical challenges to their synthesis. In particular, stereochemical outcomes in glycosylation reactions are highly dependent on the steric and electronic properties of coupling partners; thus, carbohydrate synthesis is not easily predictable. Here we report the discovery of a macrocyclic bis-thiourea derivative that catalyzes stereospecific invertive substitution pathways of glycosyl chlorides. The utility of the catalyst is demonstrated in the synthesis of trans-1,2-, cis-1,2-, and 2-deoxy-β-glycosides. Mechanistic studies are consistent with a cooperative mechanism in which an electrophile and a nucleophile are simultaneously activated to effect a stereospecific substitution reaction.
Collapse
Affiliation(s)
- Yongho Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kaid C Harper
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nadine Kuhl
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eugene E Kwan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Richard Y Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
22
|
Binding pattern of intermediate UDP-4-keto-xylose to human UDP-xylose synthase: Synthesis and STD NMR of model keto-saccharides. Carbohydr Res 2017; 437:50-58. [DOI: 10.1016/j.carres.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 11/30/2022]
|
23
|
Dibbert N, Krause A, Rios-Camacho JC, Gruh I, Kirschning A, Dräger G. A Synthetic Toolbox for the In Situ Formation of Functionalized Homo- and Heteropolysaccharide-Based Hydrogel Libraries. Chemistry 2016; 22:18777-18786. [PMID: 27864999 DOI: 10.1002/chem.201603748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Indexed: 01/14/2023]
Abstract
A synthetic toolbox for the introduction of aldehydo and hydrazido groups into the polysaccharides hyaluronic acid, alginate, dextran, pullulan, glycogen, and carboxymethyl cellulose and their use for hydrogel formation is reported. Upon mixing differently functionalized polysaccharides derived from the same natural precursor, hydrazone cross-linking takes place, which results in formation of a hydrogel composed of one type of polysaccharide backbone. Likewise, hydrogels based on two different polysaccharide strands can be formed after mixing the corresponding aldehydo- and hydrazido-modified polysaccharides. A second line of these studies paves the way to introduce a biomedically relevant ligand, namely, the adhesion factor cyclic RGD pentapeptide, by using an orthogonal click reaction. This set of modified polysaccharides served to create a library of hydrogels that differ in the combination of polysaccharide strands and the degree of cross-linking. The different hydrogels were evaluated with respect to their rheological properties, their ability to absorb water, and their cytotoxicity towards human fibroblast cell cultures. None of the hydrogels studied were cytotoxic, and, hence, they are in principal biocompatible for applications in tissue engineering.
Collapse
Affiliation(s)
- Nick Dibbert
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Andreas Krause
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Julio-Cesar Rios-Camacho
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30659, Hannover, Germany
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30659, Hannover, Germany
| | - Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Gerald Dräger
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| |
Collapse
|
24
|
Kristensen SK, Salamone S, Rasmussen MR, Marqvorsen MHS, Jensen HH. Glycosylortho-Methoxybenzoates: Catalytically Activated Glycosyl Donors with an Easily Removable and Recyclable Leaving Group. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600747] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Steffan K. Kristensen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Stéphane Salamone
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Michelle R. Rasmussen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | | | - Henrik H. Jensen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
25
|
|
26
|
Łopatkiewicz G, Mlynarski J. Synthesis of l-Pyranosides by Hydroboration of Hex-5-enopyranosides Revisited. J Org Chem 2016; 81:7545-56. [PMID: 27504790 DOI: 10.1021/acs.joc.6b01243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extensive study of the diastereoselective synthesis of l-pyranosides utilizing hydroboration of substituted exo-glucals (5-enopyranosides) obtained from d-sugars is presented. On the basis of this study we present the empirical rules describing the reaction stereoselectivity and the correlation between the yield of the l-ido product and the size of protecting groups used. Application of these guidelines revealed that the hydroboration of methyl 2,3-O-methyl-6-deoxy-α-d-xylo-hex-5-enopyranoside resulted in exclusive formation of l-ido product with high yield. This method can be successfully applied to the synthesis of l-iduronic acid being an essential component of anticoagulant drugs with diastereoselectivity superior to previously published protocols.
Collapse
Affiliation(s)
| | - Jacek Mlynarski
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Krakow, Poland
| |
Collapse
|
27
|
Lin S, Ashmus RA, Lowary TL. An Oxidation-Amidation Approach for the Synthesis of Glycuronamides. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Niedbal DA, Madsen R. Halide-mediated regioselective 6-O-glycosylation of unprotected hexopyranosides with perbenzylated glycosyl bromide donors. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.11.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Santschi N, Aiguabella N, Lewe V, Gilmour R. Delineating the physical organic profile of the 6-fluoro glycosyl donor. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Marquès S, Schuler M, Tatibouët A. Preparation of Pyranose-Based ThioimidateN-Oxides (TINOs). European J Org Chem 2015. [DOI: 10.1002/ejoc.201403619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
|
32
|
Moumé-Pymbock M, Furukawa T, Mondal S, Crich D. Probing the influence of a 4,6-O-acetal on the reactivity of galactopyranosyl donors: verification of the disarming influence of the trans-gauche conformation of C5-C6 bonds. J Am Chem Soc 2013; 135:14249-55. [PMID: 23984633 PMCID: PMC3814037 DOI: 10.1021/ja405588x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effect of a 4,6-O-alkylidene acetal on the rate of acid-catalyzed hydrolysis of methyl galactopyranosides and of spontaneous hydrolysis of 2,4-dinitrophenyl galactopyranosides has been studied through the synthesis and hydrolysis of analogs in which O6 is replaced by a methoxymethylene unit in which the methoxy group adopts either an equatorial or an axial position according to the configuration. Consistent with earlier studies under both acid-catalyzed and spontaneous hydrolysis conditions, the alkylidene acetal, or its 7-carba analog, retards hydrolysis with respect to comparable systems lacking the cyclic protecting group. The configuration at C6 in the 7-carba analogs does not influence the rate of acid-catalyzed hydrolysis but has a minor influence on the rate of spontaneous hydrolysis of the 2,4-dinitrophenyl galactosides, confirming earlier studies on the role played by the hydroxymethyl group conformation on glycoside reactivity. The benzylidene acetal is found to stabilize the α-anomer of galactopyranose derivatives relative to monocyclic analogs. Reasons for the α-selectivity of 4,6-O-benzylidene-protected galactopyranosyl donors bearing neighboring group-active protecting groups at O2 are discussed.
Collapse
Affiliation(s)
- Myriame Moumé-Pymbock
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| | - Takayuki Furukawa
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| | - Sujit Mondal
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| |
Collapse
|
33
|
Balbuena P, Gonçalves-Pereira R, Jiménez Blanco JL, García-Moreno MI, Lesur D, Ortiz Mellet C, García Fernández JM. o-Xylylene protecting group in carbohydrate chemistry: application to the regioselective protection of a single vic-diol segment in cyclodextrins. J Org Chem 2013; 78:1390-403. [PMID: 23336396 DOI: 10.1021/jo302178f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A systematic study of the suitability of α,α'-dibromo-o-xylene as a reagent for cyclic o-xylylene protection of vic-diols in different monosaccharide substrates is reported. The installation of this protecting group, formally equivalent to a di-O-benzylation reaction, proceeds with good regioselectivity toward 1,2-trans-diequatorial diol systems in pyranose and furanose rings. Initially, the benzyl ether-type derivative of the more acidic hydroxyl is preferentially formed. Subsequent intramolecular etherification toward the equatorial-oriented vicinal OH is kinetically favored. The methodology has been implemented for the simultaneous protection of the secondary O-2 and O-3 positions of a single d-glucopyranosyl unit in cyclic oligosaccharides of the cyclodextrin (CD) family (cyclomaltohexa-, -hepta-, and -octaose; α, β, and γCD).
Collapse
Affiliation(s)
- Patricia Balbuena
- Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla, c/Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Balmond EI, Coe DM, Galan MC, McGarrigle EM. α-Selective Organocatalytic Synthesis of 2-Deoxygalactosides. Angew Chem Int Ed Engl 2012; 51:9152-5. [DOI: 10.1002/anie.201204505] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Indexed: 12/14/2022]
|
35
|
Balmond EI, Coe DM, Galan MC, McGarrigle EM. α-Selective Organocatalytic Synthesis of 2-Deoxygalactosides. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204505] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Boettcher S, Matwiejuk M, Thiem J. Acceptor-influenced and donor-tuned base-promoted glycosylation. Beilstein J Org Chem 2012; 8:413-20. [PMID: 22509211 PMCID: PMC3326619 DOI: 10.3762/bjoc.8.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/06/2012] [Indexed: 12/03/2022] Open
Abstract
Base-promoted glycosylation is a recently established stereoselective and regioselective approach for the assembly of di- and oligosaccharides by using partially protected acceptors and glycosyl halide donors. Initial studies were performed on partially methylated acceptor and donor moieties as a model system in order to analyze the key principles of oxyanion reactivities. In this work, extended studies on base-promoted glycosylation are presented by using benzyl protective groups in view of preparative applications. Emphases are placed on the influence of the acceptor anomeric configuration and donor reactivities.
Collapse
Affiliation(s)
- Stephan Boettcher
- Department of Chemistry, Faculty of Science, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Martin Matwiejuk
- Glycom A/S, c/o DTU, Building 201, Anker Engelunds Vej 1, DK-2800 Kgs. Lyngby, Denmark
| | - Joachim Thiem
- Department of Chemistry, Faculty of Science, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
37
|
Matwiejuk M, Thiem J. Hydroxy Group Acidities of Partially Protected Glycopyranosides. European J Org Chem 2012. [DOI: 10.1002/ejoc.201101708] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|