1
|
Brodsky N, Phadnis N, Ibrahim M, Andino IM, Giro IB, Milligan JA. 3-Chloropropylbis(catecholato)silicate as a Bifunctional Reagent for the One-Pot Synthesis of Tetrahydroquinolines from o-Bromosulfonamides. J Org Chem 2024; 89:4191-4198. [PMID: 38412512 PMCID: PMC10949236 DOI: 10.1021/acs.joc.3c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Bis(catecholato)silicate salts are easily accessible reagents that can be used to install alkyl fragments through photoredox-enabled cross-coupling. These reagents can incorporate various functional groups including pendant alkyl halides. A halogenated organosilicate reagent was leveraged to develop a one-pot synthesis of tetrahydroquinolines from o-bromosulfonamides, where the bifunctional reagent participates in a nickel/photoredox cross-coupling followed by intramolecular nucleophilic substitution. The functional group tolerance of this cross-coupling strategy allowed for the preparation of a series of substituted tetrahydroquinolines.
Collapse
Affiliation(s)
- Noah Brodsky
- Department of Biological
and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, 4201 Henry Avenue, Philadelphia, Pennsylvania 19144, United States
| | - Nidheesh Phadnis
- Department of Biological
and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, 4201 Henry Avenue, Philadelphia, Pennsylvania 19144, United States
| | - Mohamed Ibrahim
- Department of Biological
and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, 4201 Henry Avenue, Philadelphia, Pennsylvania 19144, United States
| | - Isabel M. Andino
- Department of Biological
and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, 4201 Henry Avenue, Philadelphia, Pennsylvania 19144, United States
| | - Inés Blanc Giro
- Department of Biological
and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, 4201 Henry Avenue, Philadelphia, Pennsylvania 19144, United States
| | - John A. Milligan
- Department of Biological
and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, 4201 Henry Avenue, Philadelphia, Pennsylvania 19144, United States
| |
Collapse
|
2
|
Yu L, Ding Q, Song C, Chang J. Enantioselective Total Synthesis of (–)-Angustureine. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Palanimuthu A, Chen C, Lee GH. Synthesis of highly substituted tetrahydroquinolines using ethyl cyanoacetate via aza-Michael-Michael addition. RSC Adv 2020; 10:13591-13600. [PMID: 35492978 PMCID: PMC9051536 DOI: 10.1039/d0ra01264e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/26/2020] [Indexed: 11/21/2022] Open
Abstract
A three-component cascade reaction involving 2-alkenyl aniline, aldehydes, and ethyl cyanoacetate in the presence of DBU to synthesize highly substituted 1,2,3,4-tetrahydroquinolines is reported. The reaction proceeded through the Knoevenagel condensation of ethyl cyanoacetate with aldehydes followed by the aza-Michael-Michael addition with 2-alkenyl anilines to prepare the tetrahydroquinoline scaffolds.
Collapse
Affiliation(s)
- Arunan Palanimuthu
- Department of Chemistry, National Dong Hwa University Soufeng Hualien 974 Taiwan
| | - Chinpiao Chen
- Department of Nursing, Tzu Chi University of Science and Technology Hualien 970 Taiwan +886 3 856 1097 +886 3 857 2158 ext. 2624
- Department of Chemistry, National Dong Hwa University Soufeng Hualien 974 Taiwan
| | - Gene-Hsian Lee
- Instrumentation Center, College of Science, National Taiwan University Taipei 106 Taiwan
| |
Collapse
|
4
|
Berthold D, Breit B. Asymmetric Total Syntheses of (−)-Angustureine and (−)-Cuspareine via Rhodium-Catalyzed Hydroamination. Org Lett 2019; 22:565-568. [DOI: 10.1021/acs.orglett.9b04334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dino Berthold
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg im Breisgau, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
5
|
Davies SG, Fletcher AM, Roberts PM, Thomson JE. The Hancock Alkaloids Angustureine, Cuspareine, Galipinine, and Galipeine: A Review of their Isolation, Synthesis, and Spectroscopic Data. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen G. Davies
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| | - Ai M. Fletcher
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| | - Paul M. Roberts
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| | - James E. Thomson
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
6
|
Muthukrishnan I, Sridharan V, Menéndez JC. Progress in the Chemistry of Tetrahydroquinolines. Chem Rev 2019; 119:5057-5191. [PMID: 30963764 DOI: 10.1021/acs.chemrev.8b00567] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrahydroquinoline is one of the most important simple nitrogen heterocycles, being widespread in nature and present in a broad variety of pharmacologically active compounds. This Review summarizes the progress achieved in the chemistry of tetrahydroquinolines, with emphasis on their synthesis, during the period from mid-2010 to early 2018.
Collapse
Affiliation(s)
- Isravel Muthukrishnan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India.,Department of Chemistry and Chemical Sciences , Central University of Jammu , Rahya-Suchani (Bagla) , District-Samba, Jammu 181143 , Jammu and Kashmir , India
| | - J Carlos Menéndez
- Unidad de Química Orgańica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia , Universidad Complutense , 28040 Madrid , Spain
| |
Collapse
|
7
|
Cheng Q, Tu HF, Zheng C, Qu JP, Helmchen G, You SL. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem Rev 2018; 119:1855-1969. [PMID: 30582688 DOI: 10.1021/acs.chemrev.8b00506] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we summarize the origin and advancements of iridium-catalyzed asymmetric allylic substitution reactions during the past two decades. Since the first report in 1997, Ir-catalyzed asymmetric allylic substitution reactions have attracted intense attention due to their exceptionally high regio- and enantioselectivities. Ir-catalyzed asymmetric allylic substitution reactions have been significantly developed in recent years in many respects, including ligand development, mechanistic understanding, substrate scope, and application in the synthesis of complex functional molecules. In this review, an explicit outline of ligands, mechanism, scope of nucleophiles, and applications is presented.
Collapse
Affiliation(s)
- Qiang Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Hang-Fei Tu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Günter Helmchen
- Organisch-Chemisches Institut der Ruprecht-Karls , Universität Heidelberg , Im Neuenheimer Feld 270 , D-69120 Heidelberg , Germany
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| |
Collapse
|
8
|
Akkarasamiyo S, Sawadjoon S, Orthaber A, Samec JSM. Tsuji-Trost Reaction of Non-Derivatized Allylic Alcohols. Chemistry 2018; 24:3488-3498. [DOI: 10.1002/chem.201705164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Sunisa Akkarasamiyo
- Department of Organic Chemistry; Stockholm University; 106 91 Stockholm Sweden
| | - Supaporn Sawadjoon
- Department of Organic Chemistry; Stockholm University; 106 91 Stockholm Sweden
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratories; Uppsala University, Box 523; 75120 Uppsala Sweden
| | - Joseph S. M. Samec
- Department of Organic Chemistry; Stockholm University; 106 91 Stockholm Sweden
| |
Collapse
|
9
|
Chen P, Wu Y, Zhu S, Jiang H, Ma Z. Ir-Catalyzed reactions in natural product synthesis. Org Chem Front 2018. [DOI: 10.1039/c7qo00665a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review highlights the recent applications of Ir-catalyzed reactions in the total synthesis of natural products.
Collapse
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Yuecheng Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|
10
|
Abstract
An overview of the highlights in total synthesis of natural products using iridium as a catalyst is given.
Collapse
Affiliation(s)
- Changchun Yuan
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- PR China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| |
Collapse
|
11
|
Madhubabu M, Shankar R, Krishna T, Kumar YS, Chiranjeevi Y, Muralikrishna C, Mohan HR, More SS, Rao MB, Akula R. A convergent approach towards the synthesis of the 2-alkyl-substituted tetrahydroquinoline alkaloid (−)-cuspareine. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Qu J, Helmchen G. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis. Acc Chem Res 2017; 50:2539-2555. [PMID: 28937739 DOI: 10.1021/acs.accounts.7b00300] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal catalyzed allylic substitution is a cornerstone of organometallic and synthetic chemistry. Enantioselective versions have been developed with catalysts derived from transition metals, most notably molybdenum, nickel, ruthenium, rhodium, iridium, palladium, and copper. The palladium- and the iridium-catalyzed versions have turned out to be particularly versatile in organic synthesis because of the very broad scope of the nucleophile and great functional group compatibility. Assets of the iridium-catalyzed reaction are the formation of branched, chiral products from simple monosubstituted allylic substrates, high degrees of regio- and enantioselectivity, and use of modular, readily available chiral ligands. The possibility to use carbon, nitrogen, oxygen, and sulfur compounds as well as fluoride as nucleophiles allows a wide range of chiral building blocks to be prepared. Our Account begins with the presentation of fundamental reaction schemes and chiral ligands. We will focus our discussion on reactions promoted by phosphoramidite ligands, though numerous chiral ligands have been employed. The subsequent section presents a brief overview of reaction mechanism and experimental conditions. Two versions of the iridium-catalyzed allylic substitution have emerged. In type 1 reactions (introduced in 1997), linear allylic esters are commonly used as substrates under basic reaction conditions. In type 2 reactions (introduced in 2007), environmentally friendly branched allylic alcohols can be reacted under acidic conditions; occasionally, derivatives of allylic alcohols have also been applied. A unique feature of the type 2 reactions is that highly electrophilic allylic intermediates can be brought to reaction with weakly activated alkenes. The subsequent text is ordered according to the strategies followed to transform allylic substitution products to desired targets, most of which are natural products or drugs. Syntheses starting with an intermolecular allylic substitution are discussed first. Some fairly complex targets, for example, the potent nitric oxide inhibitor (-)-nyasol and the drug (-)-protrifenbute, have been synthesized via less than five steps from simple starting materials. Most targets discussed are cyclic compounds. Intermolecular allylic substitution with subsequent ring closing metathesis is a powerful strategy for their synthesis. Highlights are stereodivergent syntheses of Δ9-tetrahydrocannabinols (THC), wherein iridium- and organocatalysis are combined (dual catalysis). The combination of allylic alkylation with a Diels-Alder reaction was utilized to synthesize the ketide apiosporic acid and the drug fesoterodine (Toviaz). Sequential allylic amination, hydroboration and Suzuki-Miyaura coupling generates enones suitable for conjugate addition reactions; this strategy was employed in syntheses of a variety of alkaloids, for example, the poison frog alkaloid (+)-cis-195A (pumiliotoxin C). Intramolecular substitutions offer interesting possibilities to build up stereochemical complexity via short synthetic routes. For example, in diastereoselective cyclizations of chiral compounds, substrate control can be overruled by catalyst control in order to generate cis- and trans-isomers selectively from a given precursor. This approach was used to prepare a variety of piperidine and pyrrolidine alkaloids. Finally, complex polycyclic structures, including the structurally unusual indolosesquiterpenoid mycoleptodiscin A, have been generated diastereo- and enantioselectively from olefins by polyene cyclizations and from electron-rich arenes, such as indoles, in dearomatization reactions.
Collapse
Affiliation(s)
- Jianping Qu
- Institute of Advanced
Synthesis, Nanjing Tech University, Nanjing 211816, China
| | - Günter Helmchen
- Organisch-Chemisches Institut der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| |
Collapse
|
13
|
Mwenda ET, Nguyen HM. Enantioselective Synthesis of 1,2-Diamines Containing Tertiary and Quaternary Centers through Rhodium-Catalyzed DYKAT of Racemic Allylic Trichloroacetimidates. Org Lett 2017; 19:4814-4817. [PMID: 28876951 DOI: 10.1021/acs.orglett.7b02256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The amination of racemic secondary and tertiary allylic trichloroacetimidates possessing β-nitrogen substituents and proximal nitrogen-containing heterocycles, via chiral diene-ligated rhodium-catalyzed dynamic kinetic asymmetric transformations (DYKAT), provides branched allylic 1,2-diamines with high enantioselectivity. The catalytic system can be applied to the synthesis of 1,2-diamines possessing two contiguous stereocenters with excellent diastereoselectivity. Furthermore, the nitrogen-containing heterocycles suppress competing vinyl azirdine formation, allowing for the high enantioselective syntheses of 1,2-diamines possessing tertiary and quaternary centers.
Collapse
Affiliation(s)
- Edward T Mwenda
- Department of Chemistry, University of Iowa, Iowa City , Iowa 52242, United States
| | - Hien M Nguyen
- Department of Chemistry, University of Iowa, Iowa City , Iowa 52242, United States
| |
Collapse
|
14
|
Diaz-Muñoz G, Isidorio RG, Miranda IL, de Souza Dias GN, Diaz MAN. A concise and efficient synthesis of tetrahydroquinoline alkaloids using the phase transfer mediated Wittig olefination reaction. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Pappoppula M, Cardoso FSP, Garrett BO, Aponick A. Enantioselective Copper-Catalyzed Quinoline Alkynylation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507848] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Pappoppula M, Cardoso FSP, Garrett BO, Aponick A. Enantioselective Copper-Catalyzed Quinoline Alkynylation. Angew Chem Int Ed Engl 2015; 54:15202-6. [DOI: 10.1002/anie.201507848] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 11/08/2022]
|
17
|
Doušová H, Horák R, Růžičková Z, Šimůnek P. An intramolecular C-N cross-coupling of β-enaminones: a simple and efficient way to precursors of some alkaloids of Galipea officinalis. Beilstein J Org Chem 2015; 11:884-92. [PMID: 26124890 PMCID: PMC4464440 DOI: 10.3762/bjoc.11.99] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/22/2015] [Indexed: 01/22/2023] Open
Abstract
2-Aroylmethylidene-1,2,3,4-tetrahydroquinolines with the appropriate substituents can be suitable precursors for the synthesis of alkaloids from Galipea officinalis (cuspareine, galipeine, galipinine, angustureine). However, only two, rather low-yielding procedures for their synthesis are described in the literature. We have developed a simple and efficient protocol for an intramolecular, palladium or copper-catalysed amination of both chloro- and bromo-substituted 3-amino-1,5-diphenylpent-2-en-1-ones leading to the above-mentioned tetrahydroquinoline moiety. The methodology is superior to the methods published to date.
Collapse
Affiliation(s)
- Hana Doušová
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ 532 10, Pardubice, Czech Republic
| | - Radim Horák
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ 532 10, Pardubice, Czech Republic
| | - Zdeňka Růžičková
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ 532 10, Pardubice, Czech Republic
| | - Petr Šimůnek
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ 532 10, Pardubice, Czech Republic
| |
Collapse
|
18
|
Muñoz GD, Dudley GB. Synthesis of 1,2,3,4-Tetrahydroquinolines including Angustureine and Congeneric Alkaloids. A Review. ORG PREP PROCED INT 2015. [DOI: 10.1080/00304948.2015.1025012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Garg Y, Gahalawat S, Pandey SK. An enantioselective approach to 2-alkyl substituted tetrahydroquinolines: total synthesis of (+)-angustureine. RSC Adv 2015. [DOI: 10.1039/c5ra05987a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and highly efficient synthetic approach to enantiopure 2-alkyl substituted tetrahydroquinoline 1 skeleton from aldehydes as starting materials and its application to the total synthesis of (+)-angustureine 2 is described.
Collapse
Affiliation(s)
- Yuvraj Garg
- School of Chemistry and Biochemistry
- Thapar University
- Patiala 147001
- India
| | - Suraksha Gahalawat
- School of Chemistry and Biochemistry
- Thapar University
- Patiala 147001
- India
| | | |
Collapse
|
20
|
Mahajan PS, Gonnade RG, Mhaske SB. Protecting-Group-Free Diastereoselective Total Synthesis of (±)-6-epi-Cleistenolide and Chemoenzymatic Synthesis of (-)-6-epi-Cleistenolide. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Arnold JS, Mwenda ET, Nguyen HM. Rhodium-catalyzed sequential allylic amination and olefin hydroacylation reactions: enantioselective synthesis of seven-membered nitrogen heterocycles. Angew Chem Int Ed Engl 2014; 53:3688-92. [PMID: 24591294 DOI: 10.1002/anie.201310354] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/02/2014] [Indexed: 11/08/2022]
Abstract
Dynamic kinetic asymmetric amination of branched allylic acetimidates has been applied to the synthesis of 2-alkyl-dihydrobenzoazepin-5-ones. These seven-membered-ring aza ketones are prepared in good yield with high enantiomeric excess by rhodium-catalyzed allylic substitution with 2-amino aryl aldehydes followed by intramolecular olefin hydroacylation of the resulting alkenals. This two-step procedure is amenable to varied functionality and proves useful for the enantioselective preparation of these ring systems.
Collapse
Affiliation(s)
- Jeffrey S Arnold
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242 (USA) http://chem.uiowa.edu/nguyen-research-group
| | | | | |
Collapse
|
22
|
Arnold JS, Mwenda ET, Nguyen HM. Rhodium-Catalyzed Sequential Allylic Amination and Olefin Hydroacylation Reactions: Enantioselective Synthesis of Seven-Membered Nitrogen Heterocycles. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Satyanarayana G, Helmchen G. Enantioselective Syntheses of Bicyclic Lactams Based on Iridium-Catalyzed Asymmetric Allylic Substitution and Heck Cyclization. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Yus M, Foubelo F, A. Sirvent J. Enantioselective Synthesis of Tetrahydroquinoline Alkaloids (-)-Angustureine and (-)-Cuspareine from Chiral tert-Butanesulfinyl Imines. HETEROCYCLES 2014. [DOI: 10.3987/com-13-s(s)75] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Nammalwar B, Bunce RA. Recent syntheses of 1,2,3,4-tetrahydroquinolines, 2,3-dihydro-4(1H)-quinolinones and 4(1H)-quinolinones using domino reactions. Molecules 2013; 19:204-32. [PMID: 24368602 PMCID: PMC6271761 DOI: 10.3390/molecules19010204] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/20/2013] [Indexed: 11/29/2022] Open
Abstract
A review of the recent literature is given focusing on synthetic approaches to 1,2,3,4-tetrahydroquinolines, 2,3-dihydro-4(1H)-quinolinones and 4(1H)-quinolinones using domino reactions. These syntheses involve: (1) reduction or oxidation followed by cyclization; (2) SNAr-terminated sequences; (3) acid-catalyzed ring closures or rearrangements; (4) high temperature cyclizations and (5) metal-promoted processes as well as several less thoroughly studied reactions. Each domino method is presented with a brief discussion of mechanism, scope, yields, simplicity and potential utility.
Collapse
Affiliation(s)
| | - Richard A Bunce
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA.
| |
Collapse
|
26
|
Sharma A, Hartwig JF. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification. J Am Chem Soc 2013; 135:17983-9. [PMID: 24156776 PMCID: PMC3911985 DOI: 10.1021/ja409995w] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.
Collapse
Affiliation(s)
- Ankit Sharma
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
27
|
|
28
|
Tosatti P, Nelson A, Marsden SP. Recent advances and applications of iridium-catalysed asymmetric allylic substitution. Org Biomol Chem 2012; 10:3147-63. [PMID: 22407450 DOI: 10.1039/c2ob07086c] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Since their discovery in 1997, iridium-catalysed asymmetric allylic substitutions have been developed into a broadly applicable tool for the synthesis of chiral building blocks via C-C and C-heteroatom bond formation. The remarkable generality of these reactions and the high levels of regio- and enantioselectivity that are usually obtained in favour of the branched products have been made possible by a thorough investigation of the catalyst system and its mode of action. Therefore, today the Ir-catalysed asymmetric allylic substitution is a powerful reaction in the organic chemist's repertoire and has been used extensively for several applications. This article aims to provide an overview of the development of iridium catalysts derived from an Ir salt and a chiral phosphoramidite and their application to the enantioselective synthesis of natural products and biologically relevant compounds.
Collapse
Affiliation(s)
- Paolo Tosatti
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | |
Collapse
|
29
|
Hornillos V, van Zijl AW, Feringa BL. Catalytic asymmetric synthesis of chromenes and tetrahydroquinolines via sequential allylic alkylation and intramolecular Heck coupling. Chem Commun (Camb) 2012; 48:3712-4. [PMID: 22398654 DOI: 10.1039/c2cc30395g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly enantioselective synthesis of chiral chromenes and tetrahydroquinolines is achieved by combining asymmetric copper-catalyzed allylic substitution with Grignard reagents and an efficient intramolecular Heck reaction. Moreover, the exocyclic double bond formed in the cyclisation was subjected to RCM, hydroboration and hydrogenation illuminating the synthetic versatility of these heterocycles.
Collapse
Affiliation(s)
- Valentín Hornillos
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | |
Collapse
|
30
|
Taylor LL, Goldberg FW, Hii KK(M. Asymmetric synthesis of 2-alkyl-substituted tetrahydroquinolines by an enantioselective aza-Michael reaction. Org Biomol Chem 2012; 10:4424-32. [DOI: 10.1039/c2ob25122a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|