1
|
Synthesis of Functionalized Azepines via Cu(I)-Catalyzed Tandem Amination/Cyclization Reaction of Fluorinated Allenynes. Molecules 2022; 27:molecules27165195. [PMID: 36014436 PMCID: PMC9416787 DOI: 10.3390/molecules27165195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 01/17/2023] Open
Abstract
An efficient method for the selective preparation of trifluoromethyl-substituted azepin-2-carboxylates and their phosphorous analogues has been developed via Cu(I)-catalyzed tandem amination/cyclization reaction of functionalized allenynes with primary and secondary amines.
Collapse
|
2
|
Marine Cyclic Peptides: Antimicrobial Activity and Synthetic Strategies. Mar Drugs 2022; 20:md20060397. [PMID: 35736200 PMCID: PMC9230156 DOI: 10.3390/md20060397] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Oceans are a rich source of structurally unique bioactive compounds from the perspective of potential therapeutic agents. Marine peptides are a particularly interesting group of secondary metabolites because of their chemistry and wide range of biological activities. Among them, cyclic peptides exhibit a broad spectrum of antimicrobial activities, including against bacteria, protozoa, fungi, and viruses. Moreover, there are several examples of marine cyclic peptides revealing interesting antimicrobial activities against numerous drug-resistant bacteria and fungi, making these compounds a very promising resource in the search for novel antimicrobial agents to revert multidrug-resistance. This review summarizes 174 marine cyclic peptides with antibacterial, antifungal, antiparasitic, or antiviral properties. These natural products were categorized according to their sources—sponges, mollusks, crustaceans, crabs, marine bacteria, and fungi—and chemical structure—cyclic peptides and depsipeptides. The antimicrobial activities, including against drug-resistant microorganisms, unusual structural characteristics, and hits more advanced in (pre)clinical studies, are highlighted. Nocathiacins I–III (91–93), unnarmicins A (114) and C (115), sclerotides A (160) and B (161), and plitidepsin (174) can be highlighted considering not only their high antimicrobial potency in vitro, but also for their promising in vivo results. Marine cyclic peptides are also interesting models for molecular modifications and/or total synthesis to obtain more potent compounds, with improved properties and in higher quantity. Solid-phase Fmoc- and Boc-protection chemistry is the major synthetic strategy to obtain marine cyclic peptides with antimicrobial properties, and key examples are presented guiding microbiologist and medicinal chemists to the discovery of new antimicrobial drug candidates from marine sources.
Collapse
|
3
|
Shirangi HS, Moradi AV, Golsefidi MA, Hossaini Z, Jalilian HR. Green synthesis and investigation of antioxidant and antimicrobial activity of new schiff base of pyrimidoazepine derivatives: application of Fe 3O 4/CuO/ZnO@MWCNT MNCs as an efficient organometallic nanocatalyst. Mol Divers 2022; 26:3003-3019. [PMID: 35445960 DOI: 10.1007/s11030-021-10349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
In this study, we synthesized schiff base of pyrimidoazepine derivatives in high yields using multicomponent reactions of isatins, alkyl bromides, activated acetylenic compounds, guanidine and aldehydes in the presence of Fe3O4/CuO/ZnO@ Multi Walled Carbon Nanotubes (MWCNT) as a high performance catalyst in water at room temperature. The Fe3O4/CuO/ZnO@MWCNT synthesizes using Petasites hybridus rhizome water extract as a green media and moderate base. As well Fe3O4/CuO/ZnO@MWCNT magnetic nanocomposites show a good improvement in the yield of the product and displayed significant reusable activity. Investigation of antioxidant ability of synthesized compounds using radical trapping of diphenyl-picrylhydrazine and ferric reduction power experiment is another purpose in this research. Also, the antimicrobial activity of some synthesized compounds proved by employing the disk diffusion test on Gram-positive and Gram-negative bacteria. This procedure has some benefits such as short reaction time, product with excellent yields, simple catalyst and products separation.
Collapse
Affiliation(s)
| | - Ali Varasteh Moradi
- Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran.
| | | | | | - Hamid Reza Jalilian
- Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| |
Collapse
|
4
|
Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23031445. [PMID: 35163367 PMCID: PMC8836030 DOI: 10.3390/ijms23031445] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Bioactive peptides are a group of biological molecules that are normally buried in the structure of parent proteins and become active after the cleavage of the proteins. Another group of peptides is actively produced and found in many microorganisms and the body of organisms. Today, many groups of bioactive peptides have been marketed chemically or recombinantly. This article reviews the various production methods and sources of these important/ubiquitous and useful biomolecules. Their applications, such as antimicrobial, antihypertensive, antioxidant activities, blood-lipid-lowering effect, opioid role, antiobesity, ability to bind minerals, antidiabetic, and antiaging effects, will be explored. The types of pathways proposed for bioactive applications will be in the next part of the article, and at the end, the future perspectives of bioactive peptides will be reviewed. Reading this article is recommended for researchers interested in various fields of physiology, microbiology, biochemistry, and nanotechnology and food industry professionals.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan;
| | - Ali Khani
- Department of Radiation Sciences, Faculty of Applied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Sara Eghbalpour
- Department of Obstetrics and Gynecology Surgery, Babol University of Medical Sciences, Babol 4717647745, Iran;
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-974-5816
| |
Collapse
|
5
|
Soleimani Amiri S, Hossaini Z, Azizi Z. Synthesis and investigation of antioxidant and antimicrobial activity of new pyrazinopyrroloazepine derivatives using Fe
3
O
4
/CuO/ZnO@MWCNT MNCs as organometallic nanocatalyst by new MCRs. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Zahra Azizi
- Department of Chemistry, Karaj Branch Islamic Azad University Karaj Iran
| |
Collapse
|
6
|
Shirangi HS, Varasteh Moradi A, Ahmadi Golsefidi M, Hossaini Z, Jalilian HR. Fe
3
O
4
/CuO/ZnO@MWCNT MNCs as an efficient organometallic nanocatalyst promoted synthesis of new 1,2,4‐triazolpyrimidoazepine derivatives: Investigation of antioxidant and antimicrobial activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Zare Davijani N, Kia-Kojoori R, Abdolmohammadi S, Sadegh-Samiei S. Employing of Fe 3O 4/CuO/ZnO@MWCNT MNCs in the solvent-free synthesis of new cyanopyrroloazepine derivatives and investigation of biological activity. Mol Divers 2021; 26:2121-2134. [PMID: 34860313 DOI: 10.1007/s11030-021-10319-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
In this research, we synthesized the Fe3O4/CuO/ZnO@MWCNT magnetic nanocomposites using water extract of Petasites hybridus rhizome, and the high performance of synthesized catalyst was confirmed by using in the solvent-free multicomponent reactions of isatoic anhydride, N-methylimidazole, alkyl bromides, activated acetylenic compounds and 2-aminoacetonitrile at ambient temperature for the production of new cyanopyrroloazepine derivatives in high yields. This catalyst could be used several times in these reactions and have main role in the yield of product. The synthesized cyanopyrroloazepines have NH groups in their structure and for this reason have good antioxidant activity. Also, employing Gram-positive and Gram-negative bacteria in the disk diffusion procedure confirmed some cyanopyrroloazepines antimicrobial effect. The results showed that synthesized cyanopyrroloazepine prevented the bacterial growth. This used process for preparation of new cyanopyrroloazepine has some improvements such as low reaction time, product with high yields, simple separation of catalyst and products.
Collapse
Affiliation(s)
- Neda Zare Davijani
- Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran
| | - Reza Kia-Kojoori
- Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran.
| | - Shahrzad Abdolmohammadi
- Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran
| | - Sepehr Sadegh-Samiei
- Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran
| |
Collapse
|
8
|
Synthesis of diverse 2,3,4,5-tetrahydro-1H-azepine derivatives via sequential Knoevenagel reaction and Michael addition of tertiary enamide. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Petricci E, Cini E, Taddei M. Metal Catalysis with Microwaves in Organic Synthesis: a Personal Account. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elena Petricci
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Via A. Moro, 2 53100 Siena Italy
| | - Elena Cini
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Via A. Moro, 2 53100 Siena Italy
| | - Maurizio Taddei
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Via A. Moro, 2 53100 Siena Italy
| |
Collapse
|
10
|
|
11
|
Craig D, Spreadbury SRJ, White AJP. Synthesis and hetero-Diels–Alder reactions of enantiomerically pure dihydro-1H-azepines. Chem Commun (Camb) 2020; 56:9803-9806. [DOI: 10.1039/d0cc04413j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermolysis of enantiomerically pure 3-substituted 7,7-dihalo-2-azabicyclo[4.1.0]heptanes in the presence of K2CO3gives in good yields 2-alkyl-6-halo-1-tosyl-2,3-dihydro-1H-azepines.
Collapse
Affiliation(s)
- Donald Craig
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- Wood Lane
- UK
| | | | - Andrew J. P. White
- Chemical Crystallography Laboratory
- Imperial College London
- Molecular Sciences Research Hub
- Wood Lane
- UK
| |
Collapse
|
12
|
Zha GF, Rakesh K, Manukumar H, Shantharam C, Long S. Pharmaceutical significance of azepane based motifs for drug discovery: A critical review. Eur J Med Chem 2019; 162:465-494. [DOI: 10.1016/j.ejmech.2018.11.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/13/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
|
13
|
Amino acids and peptides as reactants in multicomponent reactions: modification of peptides with heterocycle backbones through combinatorial chemistry. Mol Divers 2018; 23:317-331. [PMID: 30187297 DOI: 10.1007/s11030-018-9861-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
In this study, amino acids and peptides were used as reactants in a Hantzsch multicomponent reaction in order to synthesize new structurally diverse molecules containing these synthons. As well, an applicable strategy for modification of these natural molecules with heterocycle backbones such as pyrimidine, xanthene and acridine is introduced. Using this method, a set of new amino acid- and peptide-functionalized heterocycles were synthesized in good to excellent yields under mild conditions. Furthermore, carbohydrates were used as substrates in the synthesis of some derivatives. Overall, this methodology allows the possibility of synthesis of large numbers of natural product-based libraries, using amino acids, peptides and carbohydrates through combinatorial chemistry.
Collapse
|
14
|
Masson G, Rioton S, Gomez Pardo D, Cossy J. Access to Enantio-enriched Substituted α-Trifluoromethyl Azepanes from l-Proline. Org Lett 2018; 20:5019-5022. [DOI: 10.1021/acs.orglett.8b02167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guillaume Masson
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), UMR 8231, ESPCI Paris/CNRS, PSL University, 10 rue Vauquelin, Paris 75231 Cedex 05, France
| | - Sarah Rioton
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), UMR 8231, ESPCI Paris/CNRS, PSL University, 10 rue Vauquelin, Paris 75231 Cedex 05, France
| | - Domingo Gomez Pardo
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), UMR 8231, ESPCI Paris/CNRS, PSL University, 10 rue Vauquelin, Paris 75231 Cedex 05, France
| | - Janine Cossy
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), UMR 8231, ESPCI Paris/CNRS, PSL University, 10 rue Vauquelin, Paris 75231 Cedex 05, France
| |
Collapse
|
15
|
Bakthadoss M, Kumar PV, Reddy TT, Sharada DS. Solvent and catalyst free ring expansion of indoles: a simple synthesis of highly functionalized benzazepines. Org Biomol Chem 2018; 16:8160-8168. [DOI: 10.1039/c8ob01825a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly functionalized benzazepines have been synthesized from indoles via ring expansion. Ring contraction of benzazepines to indole derivatives has also been acheived in excellent yields.
Collapse
Affiliation(s)
| | - Polu Vijay Kumar
- Department of Chemistry
- Pondicherry University
- Pondicherry – 605 014
- India
| | | | - Duddu S. Sharada
- Department of Chemistry
- Indian Institute of Technology
- Hyderabad, Kandi
- India
| |
Collapse
|
16
|
|
17
|
Zhu W, Zhao L, Wang MX. Synthesis of 2,3-Dihydro-1H-azepine and 1H-Azepin-2(3H)-one Derivatives From Intramolecular Condensation between Stable Tertiary Enamides and Aldehydes. J Org Chem 2015; 80:12047-57. [DOI: 10.1021/acs.joc.5b02021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wenju Zhu
- MOE Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liang Zhao
- MOE Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mei-Xiang Wang
- MOE Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Review cyclic peptides on a merry-go-round; towards drug design. Biopolymers 2015; 104:453-61. [DOI: 10.1002/bip.22669] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/14/2015] [Accepted: 05/04/2015] [Indexed: 01/15/2023]
|
19
|
Nortcliffe A, Moody CJ. Seven-membered ring scaffolds for drug discovery: Access to functionalised azepanes and oxepanes through diazocarbonyl chemistry. Bioorg Med Chem 2015; 23:2730-5. [DOI: 10.1016/j.bmc.2015.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/22/2014] [Accepted: 01/06/2015] [Indexed: 11/27/2022]
|
20
|
Koopmanschap G, Ruijter E, Orru RVA. Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. Beilstein J Org Chem 2014; 10:544-98. [PMID: 24605172 PMCID: PMC3943360 DOI: 10.3762/bjoc.10.50] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/24/2014] [Indexed: 12/16/2022] Open
Abstract
In the recent past, the design and synthesis of peptide mimics (peptidomimetics) has received much attention. This because they have shown in many cases enhanced pharmacological properties over their natural peptide analogues. In particular, the incorporation of cyclic constructs into peptides is of high interest as they reduce the flexibility of the peptide enhancing often affinity for a certain receptor. Moreover, these cyclic mimics force the molecule into a well-defined secondary structure. Constraint structural and conformational features are often found in biological active peptides. For the synthesis of cyclic constrained peptidomimetics usually a sequence of multiple reactions has been applied, which makes it difficult to easily introduce structural diversity necessary for fine tuning the biological activity. A promising approach to tackle this problem is the use of multicomponent reactions (MCRs), because they can introduce both structural diversity and molecular complexity in only one step. Among the MCRs, the isocyanide-based multicomponent reactions (IMCRs) are most relevant for the synthesis of peptidomimetics because they provide peptide-like products. However, these IMCRs usually give linear products and in order to obtain cyclic constrained peptidomimetics, the acyclic products have to be cyclized via additional cyclization strategies. This is possible via incorporation of bifunctional substrates into the initial IMCR. Examples of such bifunctional groups are N-protected amino acids, convertible isocyanides or MCR-components that bear an additional alkene, alkyne or azide moiety and can be cyclized via either a deprotection-cyclization strategy, a ring-closing metathesis, a 1,3-dipolar cycloaddition or even via a sequence of multiple multicomponent reactions. The sequential IMCR-cyclization reactions can afford small cyclic peptide mimics (ranging from four- to seven-membered rings), medium-sized cyclic constructs or peptidic macrocycles (>12 membered rings). This review describes the developments since 2002 of IMCRs-cyclization strategies towards a wide variety of small cyclic mimics, medium sized cyclic constructs and macrocyclic peptidomimetics.
Collapse
Affiliation(s)
- Gijs Koopmanschap
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, de Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, de Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Romano VA Orru
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, de Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Patel AR, Hunter L, Bhadbhade MM, Liu F. Conformational Regulation of Substituted Azepanes through Mono-, Di-, and Trifluorination. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Nash A, Soheili A, Tambar UK. Stereoselective Synthesis of Functionalized Cyclic Amino Acid Derivatives via a [2,3]-Stevens Rearrangement and Ring-Closing Metathesis. Org Lett 2013; 15:4770-3. [DOI: 10.1021/ol402129h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aaron Nash
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Arash Soheili
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Uttam K. Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
23
|
Patel AR, Ball G, Hunter L, Liu F. Conformational regulation of substituted azepanes through selective monofluorination. Org Biomol Chem 2013; 11:3781-5. [DOI: 10.1039/c3ob40391b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Ahmad S, Sutherland A. Stereoselective synthesis of hydroxylated 3-aminoazepanes using a multi-bond forming, three-step tandem process. Org Biomol Chem 2012; 10:8251-9. [PMID: 22961458 DOI: 10.1039/c2ob26544c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Sajjad Ahmad
- WestCHEM, School of Chemistry, University of Glasgow, UK
| | | |
Collapse
|