1
|
Guo H, Tan D, Merten C, Loh CCJ. Enantioconvergent and Site-Selective Etherification of Carbohydrate Polyols through Chiral Copper Radical Catalysis. Angew Chem Int Ed Engl 2024:e202409530. [PMID: 39152096 DOI: 10.1002/anie.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Going beyond currently reported two electron transformations that formed the core backdrop of asymmetric catalytic site-selective carbohydrate polyol functionalizations, we herein report a seminal demonstration of an enantioconvergent copper catalyzed site-selective etherification of minimally protected saccharides through a single-electron radical pathway. Further, this strategy paves a rare strategy, through which a carboxamide scaffold that is present in some glycomimetics of pharmacological relevance, can be selectively introduced. In light of the burgeoning interest in chiral radical catalysis, and the virtual absence of such stereocontrol broadly in carbohydrate synthesis, our strategy showcased the unknown capability of chiral radical copper catalysis as a contemporary tool to address the formidable site-selectivity challenge on a remarkable palette of naturally occurring saccharides. When reducing sugars were employed, a further dynamic kinetic resolution type glycosylation can be activated by the catalytic system to selectively generate the challenging β-O-glycosides.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Dilber Tan
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Christian Merten
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Petitpoisson L, Pichette A, Alsarraf J. Towards better syntheses of partially methylated carbohydrates? Org Chem Front 2022. [DOI: 10.1039/d2qo00893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We give an overview of the reported synthetic strategies towards partially methylated glycosides and discuss how better protocols could stem from catalytic site-selective transformations of carbohydrates and cleaner methylation reagents.
Collapse
Affiliation(s)
- Lucas Petitpoisson
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| | - André Pichette
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| | - Jérôme Alsarraf
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| |
Collapse
|
3
|
Ren B, Wang J, Zhang M, Chen Y, Zhao W. A Chiral Copper Catalyzed Site‐Selective O‐Alkylation of Carbohydrates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bo Ren
- College of Pharmacy Xinxiang University Jinsui Avenue 191 Xinxiang Henan 453003 People's Republic of China
| | - Jiaxi Wang
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering Sichuan University Chengdu 610041 People's Republic of China
| | - Mengyao Zhang
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| | - Yue Chen
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| | - Wei Zhao
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| |
Collapse
|
4
|
Niwa K, Yi R, Tanaka N, Kitaguchi S, Tsuji D, Kim SY, Tsogtbaatar A, Bunddulam P, Kawazoe K, Kojoma M, Damdinjav D, Itoh K, Kashiwada Y. Linaburiosides A-D, acylated iridoid glucosides from Linaria buriatica. PHYTOCHEMISTRY 2020; 171:112247. [PMID: 31927201 DOI: 10.1016/j.phytochem.2019.112247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Four previously undescribed acylated iridoid glucosides, linaburiosides A‒D, one undescribed iridoid, 7-deoxyiridolactonic acid, and one known acylated iridoid glucoside, iridolinarin C, were isolated from the aerial parts of a Mongolian traditional herbal medicine, Linaria buriatica. Linaburiosides A‒D had an acyl moiety corresponding to 7-deoxyiridolactonic acid. Detailed spectroscopic analyses of linaburiosides A‒D and 7-deoxyiridolactonic acid led to the assignment of their structures. The absolute configuration of 7-deoxyiridolactonic acid was elucidated by application of the PGME method; those of linaburiosides A‒D were assigned on the basis of chemical conversions, as well as application of the modified Mosher's method. The absolute configuration of iridolinarin C was also elucidated in this study. Anti-inflammatory and antiproliferative activities of isolated compounds and their derivatives were evaluated.
Collapse
Affiliation(s)
- Kanji Niwa
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Ren Yi
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Naonobu Tanaka
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Shindai Kitaguchi
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Daisuke Tsuji
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Sang-Yong Kim
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu, 061-0293, Japan
| | - Ariuntuya Tsogtbaatar
- School of Pharmaceutical Biomedical Sciences, Mongolian National University of Medicinal Sciences, Ulaanbaatar, 14210, Mongolia
| | - Perleidulam Bunddulam
- School of Pharmaceutical Biomedical Sciences, Mongolian National University of Medicinal Sciences, Ulaanbaatar, 14210, Mongolia
| | | | - Mareshige Kojoma
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu, 061-0293, Japan
| | - Davaadagva Damdinjav
- School of Pharmaceutical Biomedical Sciences, Mongolian National University of Medicinal Sciences, Ulaanbaatar, 14210, Mongolia
| | - Kohji Itoh
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Yoshiki Kashiwada
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan.
| |
Collapse
|
5
|
Dimakos V, Taylor MS. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem Rev 2018; 118:11457-11517. [DOI: 10.1021/acs.chemrev.8b00442] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
6
|
Amarasekara H, Dharuman S, Kato T, Crich D. Synthesis of Conformationally-Locked cis- and trans-Bicyclo[4.4.0] Mono-, Di-, and Trioxadecane Modifications of Galacto- and Glucopyranose; Experimental Limiting 3J H,H Coupling Constants for the Estimation of Carbohydrate Side Chain Populations and Beyond. J Org Chem 2018; 83:881-897. [PMID: 29241001 PMCID: PMC5775050 DOI: 10.1021/acs.joc.7b02891] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hexopyranose side chains populate three staggered conformations, whose proportions can be determined from the three sets of ideal limiting 3JH5,H6R and 3JH5,H6S coupling constants in combination with the time-averaged experimental coupling constants. Literature values for the limiting coupling constants, obtained by the study of model compounds, the use of the Haasnoot-Altona and related equations, or quantum mechanical computations, can result in computed negative populations of one of the three ideal conformations. Such values arise from errors in the limiting coupling constants and/or from the population of nonideal conformers. We describe the synthesis and analysis of a series of cis- and trans-fused mono-, di-, and trioxabicyclo[4.4.0]octane-like compounds. Correction factors for the application of data from internal models (-CH(OR)-CH(OR)-) to terminal systems (-CH(OR)-CH2(OR)) are deduced from comparison of further models, and applied where necessary. Limiting coupling constants so-derived are applied to the side chain conformations of three model hexopyranosides, resulting in calculated conformer populations without negative values. Although, developed primarily for hexopyranose side chains, the limiting coupling constants are suitable, with the correction factors presented, for application to the side chains of higher carbon sugars and to conformation analysis of acyclic diols and their derivatives in a more general sense.
Collapse
Affiliation(s)
- Harsha Amarasekara
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Suresh Dharuman
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Takayuki Kato
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - David Crich
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
7
|
Shang W, Mou ZD, Tang H, Zhang X, Liu J, Fu Z, Niu D. Site-Selective O-Arylation of Glycosides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Weidong Shang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Ze-Dong Mou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Hua Tang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Zhengyan Fu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
8
|
Shang W, Mou ZD, Tang H, Zhang X, Liu J, Fu Z, Niu D. Site-Selective O-Arylation of Glycosides. Angew Chem Int Ed Engl 2017; 57:314-318. [PMID: 29125221 DOI: 10.1002/anie.201710310] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Weidong Shang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Ze-Dong Mou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Hua Tang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Zhengyan Fu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital and School of Chemical Engineering; Sichuan University; No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
9
|
Barabaś A, Madura ID, Marek PH, Dąbrowska AM. The n -propyl 3-azido-2,3-dideoxy-β- d - arabino -hexopyranoside: Syntheses, crystal structure, physical properties and stability constants of their complexes with Cu(II), Ni(II) and VO(II). J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.07.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
11
|
Park Y, Harper KC, Kuhl N, Kwan EE, Liu RY, Jacobsen EN. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions. Science 2017; 355:162-166. [PMID: 28082586 PMCID: PMC5671764 DOI: 10.1126/science.aal1875] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023]
Abstract
Carbohydrates are involved in nearly all aspects of biochemistry, but their complex chemical structures present long-standing practical challenges to their synthesis. In particular, stereochemical outcomes in glycosylation reactions are highly dependent on the steric and electronic properties of coupling partners; thus, carbohydrate synthesis is not easily predictable. Here we report the discovery of a macrocyclic bis-thiourea derivative that catalyzes stereospecific invertive substitution pathways of glycosyl chlorides. The utility of the catalyst is demonstrated in the synthesis of trans-1,2-, cis-1,2-, and 2-deoxy-β-glycosides. Mechanistic studies are consistent with a cooperative mechanism in which an electrophile and a nucleophile are simultaneously activated to effect a stereospecific substitution reaction.
Collapse
Affiliation(s)
- Yongho Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kaid C Harper
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nadine Kuhl
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eugene E Kwan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Richard Y Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
12
|
Binding pattern of intermediate UDP-4-keto-xylose to human UDP-xylose synthase: Synthesis and STD NMR of model keto-saccharides. Carbohydr Res 2017; 437:50-58. [DOI: 10.1016/j.carres.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 11/30/2022]
|
13
|
|
14
|
Pelletier G, Zwicker A, Allen CL, Schepartz A, Miller SJ. Aqueous Glycosylation of Unprotected Sucrose Employing Glycosyl Fluorides in the Presence of Calcium Ion and Trimethylamine. J Am Chem Soc 2016; 138:3175-82. [PMID: 26859619 PMCID: PMC4817112 DOI: 10.1021/jacs.5b13384] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report a synthetic glycosylation reaction between sucrosyl acceptors and glycosyl fluoride donors to yield the derived trisaccharides. This reaction proceeds at room temperature in an aqueous solvent mixture. Calcium salts and a tertiary amine base promote the reaction with high site-selectivity for either the 3'-position or 1'-position of the fructofuranoside unit. Because nonenzymatic aqueous oligosaccharide syntheses are underdeveloped, mechanistic studies were carried out in order to identify the origin of the selectivity, which we hypothesized was related to the structure of the hydroxyl group array in sucrose. The solution conformation of various monodeoxysucrose analogs revealed the co-operative nature of the hydroxyl groups in mediating both this aqueous glycosyl bond-forming reaction and the site-selectivity at the same time.
Collapse
Affiliation(s)
- Guillaume Pelletier
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - Aaron Zwicker
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - C. Liana Allen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - Alanna Schepartz
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| |
Collapse
|
15
|
Evtushenko EV. Regioselective Benzoylation of 4,6-O-Benzylidene Acetals of Glycopyranosides in the Presence of Transition Metals. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2014.996291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Jäger M, Hartmann M, de Vries JG, Minnaard AJ. Catalytic Regioselective Oxidation of Glycosides. Angew Chem Int Ed Engl 2013; 52:7809-12. [DOI: 10.1002/anie.201301662] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/02/2013] [Indexed: 11/08/2022]
|
17
|
Jäger M, Hartmann M, de Vries JG, Minnaard AJ. Catalytic Regioselective Oxidation of Glycosides. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Sundell R, Kanerva LT. Lipases in the Regioselective Preparation of Glyceric Acid Esters of Methyl Glycosides. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Evtushenko EV. Regioselective benzoylation of glycopyranosides by benzoic anhydride in the presence of Cu(CF3COO)2. Carbohydr Res 2012; 359:111-9. [DOI: 10.1016/j.carres.2012.06.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/22/2012] [Accepted: 06/30/2012] [Indexed: 11/30/2022]
|
20
|
Boettcher S, Matwiejuk M, Thiem J. Acceptor-influenced and donor-tuned base-promoted glycosylation. Beilstein J Org Chem 2012; 8:413-20. [PMID: 22509211 PMCID: PMC3326619 DOI: 10.3762/bjoc.8.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/06/2012] [Indexed: 12/03/2022] Open
Abstract
Base-promoted glycosylation is a recently established stereoselective and regioselective approach for the assembly of di- and oligosaccharides by using partially protected acceptors and glycosyl halide donors. Initial studies were performed on partially methylated acceptor and donor moieties as a model system in order to analyze the key principles of oxyanion reactivities. In this work, extended studies on base-promoted glycosylation are presented by using benzyl protective groups in view of preparative applications. Emphases are placed on the influence of the acceptor anomeric configuration and donor reactivities.
Collapse
Affiliation(s)
- Stephan Boettcher
- Department of Chemistry, Faculty of Science, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Martin Matwiejuk
- Glycom A/S, c/o DTU, Building 201, Anker Engelunds Vej 1, DK-2800 Kgs. Lyngby, Denmark
| | - Joachim Thiem
- Department of Chemistry, Faculty of Science, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|