1
|
Yu K, Zou Z, Igareta NV, Tachibana R, Bechter J, Köhler V, Chen D, Ward TR. Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C( sp3)-H Bonds. J Am Chem Soc 2023; 145:16621-16629. [PMID: 37471698 PMCID: PMC10401721 DOI: 10.1021/jacs.3c03969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 07/22/2023]
Abstract
Enantioselective C-H amidation offers attractive means to assemble C-N bonds to synthesize high-added value, nitrogen-containing molecules. In recent decades, complementary enzymatic and homogeneous-catalytic strategies for C-H amidation have been reported. Herein, we report on an artificial metalloenzyme (ArM) resulting from anchoring a biotinylated Ir-complex within streptavidin (Sav). The resulting ArM catalyzes the enantioselective amidation of unactivated C(sp3)-H bonds. Chemogenetic optimization of the Ir cofactor and Sav led to significant improvement in both the activity and enantioselectivity. Up to >700 TON and 92% ee for the amidation of unactivated C(sp3)-H bonds was achieved. The single crystal X-ray analysis of the artificial nitrene insertase (ANIase) combined with quantum mechanics-molecular mechanics (QM-MM) calculations sheds light on critical second coordination sphere contacts leading to improved catalytic performance.
Collapse
Affiliation(s)
- Kun Yu
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Zhi Zou
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Nico V. Igareta
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Ryo Tachibana
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Julia Bechter
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Valentin Köhler
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Dongping Chen
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| |
Collapse
|
2
|
Tilly DP, Cullen W, Zhong H, Jamagne R, Vitórica-Yrezábal I, Webb SJ. α-Amino-iso-butyric acid foldamers terminated with rhodium(I) N-heterocyclic carbene catalysts. Chemistry 2021; 28:e202104293. [PMID: 34932229 PMCID: PMC9305545 DOI: 10.1002/chem.202104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 12/01/2022]
Abstract
To investigate how remotely induced changes in ligand folding might affect catalysis by organometallic complexes, dynamic α‐amino‐iso‐butyric acid (Aib) peptide foldamers bearing rhodium(I) N‐heterocyclic carbene (NHC) complexes have been synthesized and studied. X‐ray crystallography of a foldamer with an N‐terminal azide and a C‐terminal Rh(NHC)(Cl)(diene) complex showed a racemate with a chiral axis in the Rh(NHC) complex and a distorted 310 helical body. Replacing the azide with either one or two chiral L‐α‐methylvaline (L‐αMeVal) residues gave diastereoisomeric foldamers that each possessed point, helical and axial chirality. NMR spectroscopy revealed an unequal ratio of diastereoisomers for some foldamers, indicating that the chiral conformational preference of the N‐terminal residue(s) was relayed down the 1 nm helical body to the axially chiral Rh(NHC) complex. Although the remote chiral residue(s) did not affect the stereoselectivity of hydrosilylation reactions catalysed by these foldamers, these studies suggest a potential pathway towards remote conformational control of organometallic catalysts.
Collapse
Affiliation(s)
- David P Tilly
- The University of Manchester, Department of Chemistry, UNITED KINGDOM
| | - William Cullen
- The University of Manchester, Department of Chemistry, UNITED KINGDOM
| | - Heng Zhong
- The University of Manchester, Department of Chemistry, UNITED KINGDOM
| | - Romain Jamagne
- The University of Manchester, Department of Chemistry, UNITED KINGDOM
| | | | - Simon John Webb
- University of Manchester, School of Chemistry and MIB, 131 Princess St, M1 7DN, Manchester, UNITED KINGDOM
| |
Collapse
|
3
|
Dolan MA, Basa PN, Zozulia O, Lengyel Z, Lebl R, Kohn EM, Bhattacharya S, Korendovych IV. Catalytic Nanoassemblies Formed by Short Peptides Promote Highly Enantioselective Transfer Hydrogenation. ACS NANO 2019; 13:9292-9297. [PMID: 31314486 PMCID: PMC7235949 DOI: 10.1021/acsnano.9b03880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly enables formation of incredibly diverse supramolecular structures with practically important functions from simple and inexpensive building blocks. Here, we show how a semirational, bottom-up approach to create emerging properties can be extended to a design of highly enantioselective catalytic nanoassemblies. The designed peptides comprising as few as two amino acid residues spontaneously self-assemble in the presence of metal ions to form supramolecular, vesicle-like nanoassemblies that promote transfer hydrogenation of ketones in an aqueous phase with excellent conversion rates and enantioselectivities (>90% ee).
Collapse
Affiliation(s)
- Martin A Dolan
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Prem N Basa
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Oleksii Zozulia
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Zsófia Lengyel
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - René Lebl
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Eric M Kohn
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Sagar Bhattacharya
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Ivan V Korendovych
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| |
Collapse
|
4
|
Haghdoost MM, Guard J, Golbaghi G, Castonguay A. Anticancer Activity and Catalytic Potential of Ruthenium(II)-Arene Complexes with N,O-Donor Ligands. Inorg Chem 2018; 57:7558-7567. [PMID: 29888595 DOI: 10.1021/acs.inorgchem.8b00346] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The special ability of organometallic complexes to catalyze various transformations might offer new effective mechanisms for the treatment of cancer. Studies that report both the biological properties and the ability of metallic complexes to promote therapeutically relevant catalytic reactions are limited. Herein, we report the anticancer activity and catalytic potential of some ruthenium(II)-arene complexes bearing bidentate Schiff base ligands (2a and 2b) and their reduced analogues (5a and 5b, respectively). In comparison to their Schiff base counterparts 2a and 2b, we demonstrate that amine complexes 5a and 5b display (i) a higher in vitro antiproliferative activity on different human cancer cell lines, (ii) a lower rate of hydrolysis, and (iii) an improved initial catalytic rate for the reduction of NAD+ to NADH. In contrast to their imine analogues 2a and 2b, we also show that amine complexes 5a and 5b induce the generation of intracellular reactive oxygen species (ROS) in MCF-7 breast cancer cells. Our results highlight the impact that a simple ligand modification such as the reduction of an imine moiety can have on both the catalytic and biological activities of metal complexes. Moreover, the ruthenium complexes reported here display some antiproliferative activity against T47D breast cancer cells, known for their cis-platin resistance.
Collapse
Affiliation(s)
- Mohammad Mehdi Haghdoost
- INRS-Institut Armand-Frappier , Université du Québec , 531 boul. des Prairies , Laval , Quebec H7V 1B7 , Canada
| | - Juliette Guard
- INRS-Institut Armand-Frappier , Université du Québec , 531 boul. des Prairies , Laval , Quebec H7V 1B7 , Canada
| | - Golara Golbaghi
- INRS-Institut Armand-Frappier , Université du Québec , 531 boul. des Prairies , Laval , Quebec H7V 1B7 , Canada
| | - Annie Castonguay
- INRS-Institut Armand-Frappier , Université du Québec , 531 boul. des Prairies , Laval , Quebec H7V 1B7 , Canada
| |
Collapse
|
5
|
de Jesús Cázares-Marinero J, Przybylski C, Salmain M. Proteins as Macromolecular Ligands for Metal-Catalysed Asymmetric Transfer Hydrogenation of Ketones in Aqueous Medium. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Cédric Przybylski
- Institut Parisien de Chimie Moléculaire, IPCM; Sorbonne Université, CNRS; 75005 Paris France
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire, IPCM; Sorbonne Université, CNRS; 75005 Paris France
| |
Collapse
|
6
|
Facchetti G, Rimoldi I. 8-Amino-5,6,7,8-tetrahydroquinoline in iridium(iii) biotinylated Cp* complex as artificial imine reductase. NEW J CHEM 2018. [DOI: 10.1039/c8nj04558e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The imine reductase formed by the (R)-CAMPY ligand bound to the S112M Sav mutant showed an 83% ee in the asymmetric transfer hydrogenation of 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline.
Collapse
Affiliation(s)
- Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 10033 Milano
- Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 10033 Milano
- Italy
| |
Collapse
|
7
|
Hestericová M, Heinisch T, Lenz M, Ward TR. Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase. Dalton Trans 2018; 47:10837-10841. [DOI: 10.1039/c8dt02224k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Creating a tertiary coordination sphere around a transition metal catalyst incorporated within a protein affects its catalytic turnover and enantioselectivity.
Collapse
Affiliation(s)
| | | | - Markus Lenz
- Institute for Ecopreneurship
- School of Life Sciences
- University of Applied Sciences and Arts Northwestern Switzerland
- Muttenz
- Switzerland
| | | |
Collapse
|
8
|
Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chem Rev 2017; 118:142-231. [PMID: 28714313 DOI: 10.1021/acs.chemrev.7b00014] [Citation(s) in RCA: 500] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.
Collapse
Affiliation(s)
- Fabian Schwizer
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yasunori Okamoto
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Tillmann Heinisch
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yifan Gu
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Michela M Pellizzoni
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Vincent Lebrun
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Raphael Reuter
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Valentin Köhler
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Jared C Lewis
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Thomas R Ward
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
9
|
Liu Z, Lebrun V, Kitanosono T, Mallin H, Köhler V, Häussinger D, Hilvert D, Kobayashi S, Ward TR. Upregulation of an Artificial Zymogen by Proteolysis. Angew Chem Int Ed Engl 2016; 55:11587-90. [PMID: 27529471 DOI: 10.1002/anie.201605010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Indexed: 11/08/2022]
Abstract
Regulation of enzymatic activity is vital to living organisms. Here, we report the development and the genetic optimization of an artificial zymogen requiring the action of a natural protease to upregulate its latent asymmetric transfer hydrogenase activity.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P.R. China
| | - Vincent Lebrun
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Taku Kitanosono
- Department of Chemistry, School of Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hendrik Mallin
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Valentin Köhler
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Shu Kobayashi
- Department of Chemistry, School of Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Thomas R Ward
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
10
|
Liu Z, Lebrun V, Kitanosono T, Mallin H, Köhler V, Häussinger D, Hilvert D, Kobayashi S, Ward TR. Upregulation of an Artificial Zymogen by Proteolysis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhe Liu
- Department of Chemistry University of Basel 4056 Basel Switzerland
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 P.R. China
| | - Vincent Lebrun
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Taku Kitanosono
- Department of Chemistry School of Sciences The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hendrik Mallin
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Valentin Köhler
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | | | - Donald Hilvert
- Laboratory of Organic Chemistry ETH Zürich 8093 Zürich Switzerland
| | - Shu Kobayashi
- Department of Chemistry School of Sciences The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Thomas R. Ward
- Department of Chemistry University of Basel 4056 Basel Switzerland
| |
Collapse
|
11
|
Karukurichi KR, Fei X, Swyka RA, Broussy S, Shen W, Dey S, Roy SK, Berkowitz DB. Mini-ISES identifies promising carbafructopyranose-based salens for asymmetric catalysis: Tuning ligand shape via the anomeric effect. SCIENCE ADVANCES 2015; 1:e1500066. [PMID: 26501130 PMCID: PMC4613784 DOI: 10.1126/sciadv.1500066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/11/2015] [Indexed: 05/24/2023]
Abstract
This study introduces new methods of screening for and tuning chiral space and in so doing identifies a promising set of chiral ligands for asymmetric synthesis. The carbafructopyranosyl-1,2-diamine(s) and salens constructed therefrom are particularly compelling. It is shown that by removing the native anomeric effect in this ligand family, one can tune chiral ligand shape and improve chiral bias. This concept is demonstrated by a combination of (i) x-ray crystallographic structure determination, (ii) assessment of catalytic performance, and (iii) consideration of the anomeric effect and its underlying dipolar basis. The title ligands were identified by a new mini version of the in situ enzymatic screening (ISES) procedure through which catalyst-ligand combinations are screened in parallel, and information on relative rate and enantioselectivity is obtained in real time, without the need to quench reactions or draw aliquots. Mini-ISES brings the technique into the nanomole regime (200 to 350 nmol catalyst/20 μml organic volume) commensurate with emerging trends in reaction development/process chemistry. The best-performing β-d-carbafructopyranosyl-1,2-diamine-derived salen ligand discovered here outperforms the best known organometallic and enzymatic catalysts for the hydrolytic kinetic resolution of 3-phenylpropylene oxide, one of several substrates examined for which the ligand is "matched." This ligand scaffold defines a new swath of chiral space, and anomeric effect tunability defines a new concept in shaping that chiral space. Both this ligand set and the anomeric shape-tuning concept are expected to find broad application, given the value of chiral 1,2-diamines and salens constructed from these in asymmetric catalysis.
Collapse
|
12
|
Liu Z, Yasuda N, Simeone M, Reamer RA. N-Boc Deprotection and Isolation Method for Water-Soluble Zwitterionic Compounds. J Org Chem 2014; 79:11792-6. [DOI: 10.1021/jo502319z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhijian Liu
- Process
Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New
Jersey 07065, United States
| | - Nobuyoshi Yasuda
- Process
Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New
Jersey 07065, United States
| | - Michael Simeone
- Chemical
Process Development and Commercialization, Merck Manufacturing Division, P.O. Box
2000, Rahway, New Jersey 07065, United States
| | - Robert A. Reamer
- Process
Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New
Jersey 07065, United States
| |
Collapse
|
13
|
Bos J, Roelfes G. Artificial metalloenzymes for enantioselective catalysis. Curr Opin Chem Biol 2014; 19:135-43. [DOI: 10.1016/j.cbpa.2014.02.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 01/14/2023]
|
14
|
Quinto T, Schwizer F, Zimbron JM, Morina A, Köhler V, Ward TR. Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin-Streptavidin Technology. ChemCatChem 2014. [DOI: 10.1002/cctc.201300825] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Yadav PK, Singh AK, Kumar A, Kumari N, Gulino A, Mishra L, Gupta T. Azobenzamide-based proteomorphous objects as a light/pH-induced photoswitchable module. RSC Adv 2014. [DOI: 10.1039/c3ra43576h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Chevalley A, Cherrier MV, Fontecilla-Camps JC, Ghasemi M, Salmain M. Artificial metalloenzymes derived from bovine β-lactoglobulin for the asymmetric transfer hydrogenation of an aryl ketone – synthesis, characterization and catalytic activity. Dalton Trans 2014; 43:5482-9. [DOI: 10.1039/c3dt53253d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein hybrids resulting from the supramolecular anchoring to bovine β-lactoglobulin of fatty acid-derived Rh(iii) diimine complexes catalysed the asymmetric transfer hydrogenation of trifluoroacetophenone with up to 32% ee.
Collapse
Affiliation(s)
- Alice Chevalley
- Chimie ParisTech (Ecole Nationale Supérieure de Chimie de Paris)
- Laboratoire Charles Friedel
- 75231 Paris cedex 05, France
- CNRS
- UMR 7223
| | - Mickael V. Cherrier
- Metalloproteins Unit
- Institut de Biologie Structurale Jean-Pierre Ebel
- UMR 5075
- CEA
- CNRS
| | | | - Mahsa Ghasemi
- Chimie ParisTech (Ecole Nationale Supérieure de Chimie de Paris)
- Laboratoire Charles Friedel
- 75231 Paris cedex 05, France
- CNRS
- UMR 7223
| | - Michèle Salmain
- Chimie ParisTech (Ecole Nationale Supérieure de Chimie de Paris)
- Laboratoire Charles Friedel
- 75231 Paris cedex 05, France
- CNRS
- UMR 7223
| |
Collapse
|