1
|
Saleh SR, Abd-Elmegied A, Aly Madhy S, Khattab SN, Sheta E, Elnozahy FY, Mehanna RA, Ghareeb DA, Abd-Elmonem NM. Brain-targeted Tet-1 peptide-PLGA nanoparticles for berberine delivery against STZ-induced Alzheimer's disease in a rat model: Alleviation of hippocampal synaptic dysfunction, Tau pathology, and amyloidogenesis. Int J Pharm 2024; 658:124218. [PMID: 38734273 DOI: 10.1016/j.ijpharm.2024.124218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that causes severe dementia and memory loss. Surface functionalized poly(lactic-co-glycolic acid) nanoparticles have been reported for better transport through the blood-brain barrier for AD therapy. This study investigated the improved therapeutic potential of berberine-loaded poly(lactic-co-glycolic acid)/Tet-1 peptide nanoparticles (BBR/PLGA-Tet NPs) in a rat model of sporadic AD. BBR was loaded into the PLGA-Tet conjugate. BBR/PLGA-Tet NPs were physicochemically and morphologically characterized. AD was achieved by bilateral intracerebroventricular (ICV) injection of streptozotocin (STZ). Cognitively impaired rats were divided into STZ, STZ + BBR, STZ + BBR/PLGA-Tet NPs, and STZ + PLGA-Tet NPs groups. Cognitive improvement was assessed using the Morris Water Maze. Brain acetylcholinesterase and monoamine oxidase activities, amyloid β42 (Aβ42), and brain glycemic markers were estimated. Further, hippocampal neuroplasticity (BDNF, pCREB, and pERK/ERK), Tau pathogenesis (pGSK3β/GSK3β, Cdk5, and pTau), inflammatory, and apoptotic markers were evaluated. Finally, histopathological changes were monitored. ICV-STZ injection produces AD-like pathologies evidenced by Aβ42 deposition, Tau hyperphosphorylation, impaired insulin signaling and neuroplasticity, and neuroinflammation. BBR and BBR/PLGA-Tet NPs attenuated STZ-induced hippocampal damage, enhanced cognitive performance, and reduced Aβ42, Tau phosphorylation, and proinflammatory responses. BBR/PLGA-Tet NPs restored neuroplasticity, cholinergic, and monoaminergic function, which are critical for cognition and brain function. BBR/PLGA-Tet NPs may have superior therapeutic potential in alleviating sporadic AD than free BBR due to their bioavailability, absorption, and brain uptake.
Collapse
Affiliation(s)
- Samar R Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Aml Abd-Elmegied
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Somaya Aly Madhy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Fatma Y Elnozahy
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Nihad M Abd-Elmonem
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
García-Gros J, Cajal Y, Marqués AM, Rabanal F. Synthesis of the Antimicrobial Peptide Murepavadin Using Novel Coupling Agents. Biomolecules 2024; 14:526. [PMID: 38785933 PMCID: PMC11117477 DOI: 10.3390/biom14050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The problem of antimicrobial resistance is becoming a daunting challenge for human society and healthcare systems around the world. Hence, there is a constant need to develop new antibiotics to fight resistant bacteria, among other important social and economic measures. In this regard, murepavadin is a cyclic antibacterial peptide in development. The synthesis of murepavadin was undertaken in order to optimize the preparative protocol and scale-up, in particular, the use of new activation reagents. In our hands, classical approaches using carbodiimide/hydroxybenzotriazole rendered low yields. The use of novel carbodiimide and reagents based on OxymaPure® and Oxy-B is discussed together with the proper use of chromatographic conditions for the adequate characterization of peptide crudes. Higher yields and purities were obtained. Finally, the antimicrobial activity of different synthetic batches was tested in three Pseudomonas aeruginosa strains, including highly resistant ones. All murepavadin batches yielded the same highly active MIC values and proved that the chiral integrity of the molecule was preserved throughout the whole synthetic procedure.
Collapse
Affiliation(s)
- Júlia García-Gros
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Yolanda Cajal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ana Maria Marqués
- Laboratory of Microbiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Francesc Rabanal
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
3
|
Amer EI, Allam SR, Hassan AY, El-Fakharany EM, Agwa MM, Khattab SN, Sheta E, El-Faham MH. Can antibody conjugated nanomicelles alter the prospect of antibody targeted therapy against schistosomiasis mansoni? PLoS Negl Trop Dis 2023; 17:e0011776. [PMID: 38039267 PMCID: PMC10691730 DOI: 10.1371/journal.pntd.0011776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/07/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND CLA (conjugated linoleic acid)-mediated activation of the schistosome tegument-associated sphingomyelinase and consequent disruption of the outer membrane might allow host antibodies to access the apical membrane antigens. Here, we investigated a novel approach to enhance specific antibody delivery to concealed surface membrane antigens of Schistosoma mansoni utilising antibody-conjugated-CLA nanomicelle technology. METHODOLOGY/PRINCIPAL FINDINGS We invented and characterised an amphiphilic CLA-loaded whey protein co-polymer (CLA-W) as an IV injectable protein nanocarrier. Rabbit anti-Schistosoma mansoni infection (anti-SmI) and anti-Schistosoma mansoni alkaline phosphatase specific IgG antibodies were purified from rabbit sera and conjugated to the surface of CLA-W co-polymer to form antibody-conjugated-CLA-W nanomicelles (Ab-CLA-W). We investigated the schistosomicidal effects of CLA-W and Ab-CLA-W in a mouse model of Schistosoma mansoni against early and late stages of infection. Results showed that conjugation of nanomicelles with antibodies, namely anti-SmI, significantly enhanced the micelles' schistosomicidal and anti-pathology activities at both the schistosomula and adult worm stages of the infection resulting in 64.6%-89.9% reductions in worm number; 72.5-94% and 66.4-85.2% reductions in hepatic eggs and granulomas, respectively. Treatment induced overall improvement in liver histopathology, reducing granuloma size and fibrosis and significantly affecting egg viability. Indirect immunofluorescence confirmed CLA-W-mediated antigen exposure on the worm surface. Electron microscopy revealed extensive ultrastructural damage in worm tegument induced by anti-SmI-CLA-W. CONCLUSION/SIGNIFICANCE The novel antibody-targeted nano-sized CLA delivery system offers great promise for treatment of Schistosoma mansoni infection and control of its transmission. Our in vivo observations confirm an immune-mediated enhanced effect of the schistosomicidal action of CLA and hints at the prospect of nanotechnology-based immunotherapy, not only for schistosomiasis, but also for other parasitic infections in which chemotherapy has been shown to be immune-dependent. The results propose that the immunodominant reactivity of the anti-SmI serum, Schistosoma mansoni fructose biphosphate aldolase, SmFBPA, merits serious attention as a therapeutic and vaccine candidate.
Collapse
Affiliation(s)
- Eglal I. Amer
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sonia R. Allam
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Aceel Y. Hassan
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Mona M. Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Sherine N. Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa H. El-Faham
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Salah M, Sallam MA, Abdelmoneem MA, Teleb M, Elkhodairy KA, Bekhit AA, Khafaga AF, Noreldin AE, Elzoghby AO, Khattab SN. Sequential Delivery of Novel Triple Drug Combination via Crosslinked Alginate/Lactoferrin Nanohybrids for Enhanced Breast Cancer Treatment. Pharmaceutics 2022; 14:2404. [PMID: 36365222 PMCID: PMC9693489 DOI: 10.3390/pharmaceutics14112404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 12/01/2023] Open
Abstract
While breast cancer remains a global health concern, the elaboration of rationally designed drug combinations coupled with advanced biocompatible delivery systems offers new promising treatment venues. Herein, we repurposed rosuvastatin (RST) based on its selective tumor apoptotic effect and combined it with the antimetabolite pemetrexed (PMT) and the tumor-sensitizing polyphenol honokiol (HK). This synergistic three-drug combination was incorporated into protein polysaccharide nanohybrids fabricated by utilizing sodium alginate (ALG) and lactoferrin (LF), inspired by the stealth property of the former and the cancer cell targeting capability of the latter. ALG was conjugated to PMT and then coupled with LF which was conjugated to RST, forming core shell nanohybrids into which HK was physically loaded, followed by cross linking using genipin. The crosslinked HK-loaded PMT-ALG/LF-RST nanohybrids exhibited a fair drug loading of 7.86, 5.24 and 6.11% for RST, PMT and HK, respectively. It demonstrated an eight-fold decrease in the IC50 compared to the free drug combination, in addition to showing an enhanced cellular uptake by MCF-7 cells. The in vivo antitumor efficacy in a breast cancer-bearing mouse model confirmed the superiority of the triple cocktail-loaded nanohybrids. Conclusively, our rationally designed triple drug-loaded protein/polysaccharide nanohybrids offer a promising, biocompatible approach for an effective breast tumor suppression.
Collapse
Affiliation(s)
- Mai Salah
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mona A. Abdelmoneem
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Mohamed Teleb
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Kadria A. Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Adnan A. Bekhit
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, Sakheer P.O. Box 32 038, Bahrain
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Ahmed E. Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ahmed O. Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sherine N. Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
5
|
R. M. Metawea O, Teleb M, Haiba NS, Elzoghby AO, Khafaga AF, Noreldin AE, Khattab SN, Khalil HH. Folic acid-poly(N-isopropylacrylamide-maltodextrin) nanohydrogels a novel thermo-/pH-responsive polymer for resveratrol breast cancer targeted therapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Haiba N, Khalil HH, Bergas A, Abu-Serie MM, Khattab SN, Teleb M. First-in-Class Star-Shaped Triazine Dendrimers Endowed with MMP-9 Inhibition and VEGF Suppression Capacity: Design, Synthesis, and Anticancer Evaluation. ACS OMEGA 2022; 7:21131-21144. [PMID: 35755386 PMCID: PMC9219090 DOI: 10.1021/acsomega.2c01949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 06/12/2023]
Abstract
Off-target side effects are major challenges hindering the clinical success of matrix metalloproteinase (MMP) inhibitors. Various targeting strategies revitalized MMP research to eliminate this drawback. Herein, we developed s-triazine-based dendrimeric architecture not only amenable to tumor targeting but also decorated with pharmacophoric entities to endow MMP-9 inhibition for halting cancer progression. The design rationale utilized hydrazide branching chains as well as carboxylic and hydroxamic acid termini as Zn-binding groups to confer substantial MMP inhibitory potential. The carboxylic acids are tetherable to tumor targeting ligands and other cargo payloads as synergistic drugs via biodegradable linkages. The synthesized series were screened for cytotoxicity against normal fibroblasts (Wi-38) and two selected cancers (MDA-MB 231 and Caco-2) via MTT assay. The most active hexacarboxylic acid dendrimer 8a was more potent and safer than Dox against MDA-MB 231 and Caco-2 cells. It intrinsically inhibited MMP-9 with selectivity over MMP-2. Docking simulations demonstrated that the extended carboxylic acid termini of 8a could possibly chelate the active site Zn of MMP-9 and form hydrogen-bonding interactions with the ligand essential backbone Tyr423. In addition, it suppressed the correlated oncogenic mediators VEGF and cyclin D, upregulated p21 expression, induced apoptosis (>75%), and inhibited the tumor cell migration (∼84%) in the treated cancer cells. Thus, up to our knowledge, it is the first triazine-based MMP-9 inhibitor dendrimer endowed with VEGF suppression potential that can be employed as a bioactive carrier.
Collapse
Affiliation(s)
- Nesreen
S. Haiba
- Department
of Physics and Chemistry, Faculty of Education, Alexandria University, Alexandria 21321, Egypt
| | - Hosam H. Khalil
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Ahmed Bergas
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Marwa M. Abu-Serie
- Medical
Biotechnology Department, Genetic Engineering and Biotechnology Research
Institute, City of Scientific Research and
Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Sherine N. Khattab
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21321, Egypt
| | - Mohamed Teleb
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21321, Egypt
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
7
|
Mokhtar S, Khattab SN, Elkhodairy KA, Teleb M, Bekhit AA, Elzoghby AO, Sallam MA. Methotrexate-Lactoferrin Targeted Exemestane Cubosomes for Synergistic Breast Cancer Therapy. Front Chem 2022; 10:847573. [PMID: 35392419 PMCID: PMC8980280 DOI: 10.3389/fchem.2022.847573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
While the treatment regimen of certain types of breast cancer involves a combination of hormonal therapy and chemotherapy, the outcomes are limited due to the difference in the pharmacokinetics of both treatment agents that hinders their simultaneous and selective delivery to the cancer cells. Herein, we report a hybrid carrier system for the simultaneous targeted delivery of aromatase inhibitor exemestane (EXE) and methotrexate (MTX). EXE was physically loaded within liquid crystalline nanoparticles (LCNPs), while MTX was chemically conjugated to lactoferrin (Lf) by carbodiimide reaction. The anionic EXE-loaded LCNPs were then coated by the cationic MTX–Lf conjugate via electrostatic interactions. The Lf-targeted dual drug-loaded LCNPs exhibited a particle size of 143.6 ± 3.24 nm with a polydispersity index of 0.180. It showed excellent drug loading with an EXE encapsulation efficiency of 95% and an MTX conjugation efficiency of 33.33%. EXE and MTX showed synergistic effect against the MCF-7 breast cancer cell line with a combination index (CI) of 0.342. Furthermore, the Lf-targeted dual drug-loaded LCNPs demonstrated superior synergistic cytotoxic activity with a combination index (CI) of 0.242 and a dose reduction index (DRI) of 34.14 and 4.7 for EXE and MTX, respectively. Cellular uptake studies demonstrated higher cellular uptake of Lf-targeted LCNPs into MCF-7 cancer cells than non-targeted LCNPs after 4 and 24 h. Collectively, the targeted dual drug-loaded LCNPs are a promising candidate offering combinational hormonal therapy/chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Sarah Mokhtar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sherine N. Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- *Correspondence: Sherine N. Khattab, , ; Ahmed O. Elzoghby,
| | - Kadria A. Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Adnan A. Bekhit
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Al-Manamah, Bahrain
| | - Ahmed O. Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- *Correspondence: Sherine N. Khattab, , ; Ahmed O. Elzoghby,
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Pawlas J, Rasmussen JH. Environmentally Sensible Organocatalytic Fmoc/ t-Bu Solid-Phase Peptide Synthesis. Org Lett 2022; 24:1827-1832. [DOI: 10.1021/acs.orglett.2c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jan Pawlas
- PolyPeptide Group, Limhamnsvägen 108, P.O. Box 30089, 20061 Limhamn, Sweden
| | - Jon H. Rasmussen
- PolyPeptide Group, Limhamnsvägen 108, P.O. Box 30089, 20061 Limhamn, Sweden
| |
Collapse
|
9
|
Khalil HH, Osman HA, Teleb M, Darwish AI, Abu-Serie MM, Khattab SN, Haiba NS. Engineered s-Triazine-Based Dendrimer-Honokiol Conjugates as Targeted MMP-2/9 Inhibitors for Halting Hepatocellular Carcinoma. ChemMedChem 2021; 16:3701-3719. [PMID: 34547831 DOI: 10.1002/cmdc.202100465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/20/2021] [Indexed: 12/17/2022]
Abstract
Despite the advances in developing MMP-2/9 inhibitors, off-target side effects and pharmacokinetics problems remain major challenges hindering their clinical success in cancer therapy. However, recent targeting strategies have clearly revitalized MMP research. Herein, we introduce new s-triazine-based dendrimers endowed with intrinsic MMP-2/9 inhibitory potential and tetherable to hepatocellular carcinoma-specific targeting ligands and anticancer agents via biodegradable linkages for targeted therapy. The designed dendrimeric platform was built with potential zinc-binding branching linkers (hydrazides) and termini (carboxylic acids and hydrazides) to confer potency against MMP-2/9. Preliminary cytotoxicity screening and MMP-2/9 inhibition assay of the free dendrimers revealed promising potency (MMP-9; IC50 =0.35-0.57 μM, MMP-2; IC50 =0.39-0.77 μM) within their safe doses (EC100 =94.15-42.75 μM). The hydrazide dendrimer was comparable to NNGH and superior to the carboxylic acid analogue. MTT assay showed that the free dendrimers were superior to the reference anticancer agent honokiol. Their anticancer potency was enhanced by HK conjugation, targeting ligands installation and PEGylation as exemplified by the hydrazide dendrimer conjugate (TPG3 -NH2 )-SuHK-FA-SuPEG (Huh-7; IC50 =5.54 μM, HepG-2; IC50 =10.07 μM) being 4 folds more active than HK, followed by the carboxylic acid conjugate (TPG3 -OH)-HK-LA-PEG (Huh-7; IC50 =14.97, HepG-2; IC50 =21.29 μM). This was consistent with apoptosis studies.
Collapse
Affiliation(s)
- Hosam H Khalil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Heba A Osman
- Department of Physics and Chemistry Faculty of Education, Alexandria University, Alexandria, 21526, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - A I Darwish
- Department of Physics and Chemistry Faculty of Education, Alexandria University, Alexandria, 21526, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nesreen S Haiba
- Department of Physics and Chemistry Faculty of Education, Alexandria University, Alexandria, 21526, Egypt
| |
Collapse
|
10
|
Al Musaimi O, Wisdom R, Talbiersky P, De La Torre BG, Albericio F. Propylphosphonic Anhydride (T3P®) as Coupling Reagent for Solid‐Phase Peptide Synthesis. ChemistrySelect 2021. [DOI: 10.1002/slct.202100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Othman Al Musaimi
- Peptide Science Laboratory School of Chemistry and Physics University of KwaZulu-Natal Durban 4000 South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP) School of Laboratory Medicine and Medical Sciences College of Health Sciences University of KwaZulu-Natal Durban 4000 South Africa
| | - Richard Wisdom
- Euticals GmbH Industriepark Höchst D569 65926 Frankfurt am Main Germany
| | - Peter Talbiersky
- Euticals GmbH Industriepark Höchst D569 65926 Frankfurt am Main Germany
| | - Beatriz G. De La Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP) School of Laboratory Medicine and Medical Sciences College of Health Sciences University of KwaZulu-Natal Durban 4000 South Africa
| | - Fernando Albericio
- Peptide Science Laboratory School of Chemistry and Physics University of KwaZulu-Natal Durban 4000 South Africa
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) 08034 Barcelona Spain
- CIBER-BBN Networking Centre on Bioengineering Biomaterials and Nanomedicine and Department of Organic Chemistry University of Barcelona 08028 Barcelona Spain
| |
Collapse
|
11
|
El-Faham A, Albericio F, Manne SR, de la Torre BG. OxymaPure Coupling Reagents: Beyond Solid-Phase Peptide Synthesis. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1706296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractOxymaPure [ethyl 2-cyano-2-(hydroxyimino)acetate] is an exceptional reagent with which to suppress racemization and enhance coupling efficiency during amide bond formation. The tremendous popularity of OxymaPure has led to the development of several Oxyma-based reagents. OxymaPure and its derived reagents are widely used in solid- and solution-phase peptide chemistry. This review summarizes the recent developments and applications of OxymaPure and Oxyma-based reagents in peptide chemistry, in particular in solution-phase chemistry. Moreover, the side reaction associated with OxymaPure is also discussed.1 Introduction2 Oxyma-Based Coupling Reagents2.1 Aminium/Uronium Salts of OxymaPure2.2 Phosphonium Salts of OxymaPure2.3 Oxyma-Based Phosphates2.4 Sulfonate Esters of OxymaPure2.5 Benzoate Esters of OxymaPure2.6 Carbonates of OxymaPure Derivatives3 OxymaPure Derivatives4 Other Oxime-Based Additives and Coupling Reagents5 Side Reactions Using OxymaPure Derivatives6 Conclusion7 List of Abbreviations
Collapse
Affiliation(s)
- Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University
- Department of Chemistry, Faculty of Science, Alexandria University,
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal
- Department of Chemistry, College of Science, King Saud University
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona
| | - Srinivasa Rao Manne
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal
| | - Beatriz G. de la Torre
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal
| |
Collapse
|
12
|
Self- assembled lactoferrin-conjugated linoleic acid micelles as an orally active targeted nanoplatform for Alzheimer's disease. Int J Biol Macromol 2020; 162:246-261. [DOI: 10.1016/j.ijbiomac.2020.06.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/22/2020] [Accepted: 06/07/2020] [Indexed: 12/29/2022]
|
13
|
Lactoferrin-dual drug nanoconjugate: Synergistic anti-tumor efficacy of docetaxel and the NF-κB inhibitor celastrol. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111422. [PMID: 33255023 DOI: 10.1016/j.msec.2020.111422] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/27/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Despite the progress in cancer nanotherapeutics, some obstacles still impede the success of nanocarriers and hinder their clinical translation. Low drug loading, premature drug release, off-target toxicity and multi-drug resistance are among the most difficult challenges. Lactoferrin (LF) has demonstrated a great tumor targeting capacity via its high binding affinity to low density lipoprotein (LDL) and transferrin (Tf) receptors overexpressed by various cancer cells. Herein, docetaxel (DTX) and celastrol (CST) could be successfully conjugated to LF backbone for synergistic breast cancer therapy. Most importantly, the conjugate self-assembled forming nanoparticles of 157.8 nm with elevated loading for both drugs (6.94 and 5.98% for DTX and CST, respectively) without risk of nanocarrier instability. Moreover, the nanoconjugate demonstrated enhanced in vivo anti-tumor efficacy in breast cancer-bearing mice, as reflected by a reduction in tumor volume, prolonged survival rate and significant suppression of NF-κB p65, TNF-α, COX-2 and Ki-67 expression levels compared to the group given free combined DTX/CST therapy and to positive control. This study demonstrated the proof-of-principle for dual drug coupling to LF as a versatile nanoplatform that could augment their synergistic anticancer efficacy.
Collapse
|
14
|
Gaber M, Elhasany KA, Sabra S, Helmy MW, Fang JY, Khattab SN, Bekhit AA, Teleb M, Elkodairy KA, Elzoghby AO. Co-Administration of Tretinoin Enhances the Anti-Cancer Efficacy of Etoposide via Tumor-Targeted Green Nano-Micelles. Colloids Surf B Biointerfaces 2020; 192:110997. [PMID: 32361378 DOI: 10.1016/j.colsurfb.2020.110997] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/20/2020] [Accepted: 03/24/2020] [Indexed: 12/29/2022]
Abstract
Herein we report promoted anti-cancer activity via a combination strategy of synergistic chemotherapy/retinoid-based breast cancer therapy with shell-stabilized micellar green nanomedicine. Amphiphilic zein-chondroitin sulfate (ChS)-based copolymeric micelles (PMs) were successfully developed via carbodiimide coupling for concomitant delivery of etoposide (ETP) and all-trans retinoic acid (ATRA) to breast cancer. The micelles exhibited low critical micellar concentration (CMC) of 0.008 mg/mL with high encapsulation efficiencies of ETP and ATRA (61.2 and 84.29%, respectively). Calcium-mediated crosslinking of the anionic ChS micellar shell resulted in prolonged drug release with small micellar size of 222.7 nm. The micelles exhibited augmented internalization into MCF-7 breast cancer cells by virtue of ChS binding affinity to CD44 receptors overexpressed by cancer cells. Consequently, the ETP/ATRA-loaded micelles exhibited synergistic cytotoxicity against breast cancer cells as revealed by their significantly lower IC50, combination index (CI), and higherdose reduction index (DRI) in comparison to the free ETP and free ATRA or their combination. Micelles displayed superiority in reducing tumor volume, decreasing proliferation, and promoting necrosis in mice bearing Ehrlich Ascites Tumor (EAT) upon comparison to free ETP and free ATRA or their combination. Overall, the developed green zein-ChS micelles offer a promising platform for tumor-targeted delivery of hydrophobic therapeutic agents.
Collapse
Affiliation(s)
- Mohamed Gaber
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Kholod A Elhasany
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Saly Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Maged W Helmy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhur University, Damanhur, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan
| | - Sherine N Khattab
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt.
| | - Adnan A Bekhit
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Mohamed Teleb
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Kadria A Elkodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences & Technology (HST), Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Synthesis of lactoferrin mesoporous silica nanoparticles for pemetrexed/ellagic acid synergistic breast cancer therapy. Colloids Surf B Biointerfaces 2020; 188:110824. [PMID: 32023511 DOI: 10.1016/j.colsurfb.2020.110824] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/09/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022]
Abstract
Despite the clinical approval of few nanomedicines for cancer therapy, some drawbacks still impede their improved efficiency including low drug loading, off-target toxicity and development of multi-drug resistance. Herein, lactoferrin (Lf)-coupled mesoporous silica nanoparticles (MSNPs) were developed for combined delivery of the cytotoxic drug pemetrexed (PMT) and the phytomedicine ellagic acid (EA) for synergistic breast cancer therapy. While the hydrophobic EA was physically encapsulated within the pores of MSNPs via the adsorptive properties of MSNPs and the electrostatic interactions between the negatively charged EA and positively charged amino modified MSNs, the highly water soluble PMT was chemically anchored to the Lf shell through chemical conjugation to the surface of lactoferrin coated MSNPs by carbodiimide reaction to avoid pre-mature drug release and systemic toxicity. The dual drug-loaded Lf-MSNPs (284 nm) demonstrated a sequential faster release of EA followed by a sustained release of PMT. The dual drug-loaded Lf-MSNPs exhibited highest cytotoxicity against MCF-7 (Michigan Cancer Foundation-7) breast cancer cells as revealed by the lowest combination index (CI = 0.885) compared to free drugs. The combination index value (< 1) revealed synergy between both loaded drugs. Furthermore, high cellular uptake of the nanocarriers into MCF-7 breast cancer cells was observed via Lf-receptor mediated endocytosis. Altogether, the dual drug-loaded Lf-targeted MSNPs showed to be a promising carrier for breast cancer therapy through triggering different signaling pathways, and hence overcoming the multi-drug resistance and minimizing the systemic toxicity.
Collapse
|
16
|
Carbajo D, El-Faham A, Royo M, Albericio F. Optimized Stepwise Synthesis of the API Liraglutide Using BAL Resin and Pseudoprolines. ACS OMEGA 2019; 4:8674-8680. [PMID: 31459957 PMCID: PMC6648002 DOI: 10.1021/acsomega.9b00974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/18/2019] [Indexed: 05/15/2023]
Abstract
The number of peptide-based active pharmaceutical ingredients (APIs) has increased enormously in recent years. Furthermore, the emerging new peptide drug candidates are more complex and larger. For the industrial solid-phase synthesis of C-carboxylic acid peptides, the two main resins available, Wang and chlorotrityl chloride (CTC), have a number of drawbacks. In this context, resins that form an amide bond with the first amino acid are more robust than Wang and CTC resins. Here, we address the use of the backbone (BAL) resin for the synthesis of the peptide liraglutide. The BAL resin, in conjunction with the use of pseudoprolines to avoid aggregation, allows the stepwise solid-phase synthesis of this API in excellent purity and yield.
Collapse
Affiliation(s)
- Daniel Carbajo
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
Barcelona Science Park, 08028 Barcelona, Spain
- Institute
of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research
Council (CSIC), 08034 Barcelona, Spain
| | - Ayman El-Faham
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426, Alexandria 21321, Egypt
| | - Miriam Royo
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
Barcelona Science Park, 08028 Barcelona, Spain
- Institute
of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research
Council (CSIC), 08034 Barcelona, Spain
| | - Fernando Albericio
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
Barcelona Science Park, 08028 Barcelona, Spain
- Institute
of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research
Council (CSIC), 08034 Barcelona, Spain
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- School of
Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- E-mail: , . Phone: (+34) 618 089
145, (+27) 614 009 144
| |
Collapse
|
17
|
Varnava KG, Sarojini V. Making Solid-Phase Peptide Synthesis Greener: A Review of the Literature. Chem Asian J 2019; 14:1088-1097. [PMID: 30681290 DOI: 10.1002/asia.201801807] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/24/2019] [Indexed: 11/07/2022]
Abstract
To date, the synthesis of peptides is concurrent with the production of enormous amounts of toxic waste. DMF, CH2 Cl2 , and NMP are three of the most toxic organic solvents used in chemical synthesis and are the most common solvents used for peptide synthesis. Additionally, concerns about the hepatotoxicity caused by exposure to DMF and from the toxic and allergenic nature of additives used in peptide synthesis necessitates the need for a green, environmentally friendly, and safer protocol for peptide synthesis. This review summarizes the current literature on green solid-phase peptide synthesis successes and challenges encountered. The review concludes with suggestions for future research towards a simple and efficient green peptide synthesis protocol.
Collapse
Affiliation(s)
- Kyriakos G Varnava
- School of Chemical Sciences, University of Auckland, Auckland, 1142, New Zealand
| | | |
Collapse
|
18
|
Zhou R, Sun Y, Li H, Long W, Liao X, Feng P, Xu S. Synthesis and Biological Evaluation of Reniochalistatins A-E and a Reniochalistatin E Analogue. ChemMedChem 2018; 13:2202-2207. [DOI: 10.1002/cmdc.201800529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Rong Zhou
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Yueguang Sun
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Hangbin Li
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Weili Long
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Xiaojian Liao
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Pengju Feng
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Shihai Xu
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| |
Collapse
|
19
|
Anwar DM, Khattab SN, Helmy MW, Kamal MK, Bekhit AA, Elkhodairy KA, Elzoghby AO. Lactobionic/Folate Dual-Targeted Amphiphilic Maltodextrin-Based Micelles for Targeted Codelivery of Sulfasalazine and Resveratrol to Hepatocellular Carcinoma. Bioconjug Chem 2018; 29:3026-3041. [PMID: 30110148 DOI: 10.1021/acs.bioconjchem.8b00428] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, promising approaches of dual-targeted micelles and drug-polymer conjugation were combined to enable injection of poorly soluble anticancer drugs together with site-specific drug release. Ursodeoxycholic acid (UDCA) as a hepatoprotective agent was grafted to maltodextrin (MD) via carbodiimide coupling to develop amphiphilic maltodextrin-ursodeoxycholic acid (MDCA)-based micelles. Sulfasalazine (SSZ), as a novel anticancer agent, was conjugated via a tumor-cleavable ester bond to MD backbone to obtain tumor-specific release, whereas resveratrol (RSV) was physically entrapped within the hydrophobic micellar core. For maximal tumor-targeting, both folic acid (FA) and lactobionic acid (LA) were coupled to the surface of micelles to obtain dual-targeted micelles. The decrease of critical micelle concentration (CMC) from 0.012 to 0.006 mg/mL declares the significance of a dual hydrophobicized core of micelles by both UDCA and SSZ. The dual-targeted micelles showed a great hemocompatibility, as well as enhanced cytotoxicity and internalization into HepG-2 liver cancer cells via binding to overexpressed folate and asialoglycoprotein receptors. In vivo, the micelles demonstrated superior antitumor effects revealed as reduction in the liver/body weight ratio, inhibition of angiogenesis, and enhanced apoptosis. Overall, combined strategies of dual active targeted micelles with bioresponsive drug conjugation could be utilized as a promising approach for tumor-targeted drug delivery.
Collapse
Affiliation(s)
| | - Sherine N Khattab
- Department of Chemistry and #Department of Oceanography , Faculty of Science, Alexandria University , Alexandria 21321 , Egypt
| | - Maged W Helmy
- Department of Pharmacology and Toxicology , Faculty of Pharmacy, Damanhour University , Damanhour 22516 , Egypt
| | - Mohamed K Kamal
- Department of Toxicology , Central Laboratories of Alexandria, Health Affairs Directorate , Alexandria 21518 , Egypt
| | - Adnan A Bekhit
- Pharmacy Program, Allied Health Department, College of Health Sciences , University of Bahrain , P.O. Box 32038, Zallaq , Kingdom of Bahrain
| | | | - Ahmed O Elzoghby
- Division of Engineering in Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115.,Harvard-MIT Division of Health Sciences and Technology, Cambridge , Massachusetts 02139
| |
Collapse
|
20
|
Albericio F, El-Faham A. Choosing the Right Coupling Reagent for Peptides: A Twenty-Five-Year Journey. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00159] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, University Road,
Westville, Durban 4001, South Africa
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, Barcelona 08028, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426,
Ibrahimia, Alexandria 21321, Egypt
| |
Collapse
|
21
|
El-Far SW, Helmy MW, Khattab SN, Bekhit AA, Hussein AA, Elzoghby AO. Folate conjugated vs PEGylated phytosomal casein nanocarriers for codelivery of fungal- and herbal-derived anticancer drugs. Nanomedicine (Lond) 2018; 13:1463-1480. [DOI: 10.2217/nnm-2018-0006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: Monascin and ankaflavin, the major fractions of the fungal-derived monascus yellow pigments, were incorporated with the herbal drug, resveratrol (RSV) within the core of folate-conjugated casein micelles (FA–CAS MCs, F1) for active targeting. PEGylated RSV-phospholipid complex bilayer enveloping casein-loaded micelles (PEGPC–CAS MCs) were also developed as passive-targeted nanosystem. Results: FA– and PEGPC–CAS MCs demonstrated a proper size with monomodal distribution, sustained drug release profiles and good hemocompatibility. The coloaded MCs showed superior cytotoxicity to MCF-7 breast cancer cells compared with free drugs. Both nanosystems exerted excellent in vivo antitumor efficacy in breast cancer bearing mice with PEGylated MCs showing comparable tumor regression to folate-conjugated MCs. Conclusion: Evergreen nanoplatforms coloaded with monascus yellow pigments and RSV were effective for breast cancer treatment.
Collapse
Affiliation(s)
- Shaymaa W El-Far
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria 21526, Egypt
| | - Maged W Helmy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Sherine N Khattab
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Adnan A Bekhit
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Pharmacy Program, Department of Allied Health, College of Health Sciences, University of Bahrain, PO Box 32038, Manama, Kingdom of Bahrain
| | - Ahmed A Hussein
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Medicine, Division of Engineering in Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Hara RI, Mitsuhashi Y, Saito K, Maeda Y, Wada T. Solid-Phase Synthesis of Oligopeptides Containing Sterically Hindered Amino Acids on Nonswellable Resin Using 3-Nitro-1,2,4-triazol-1-yl-tris(pyrrolidin-1-yl)phosphonium Hexafluorophosphate (PyNTP) as the Condensing Reagent. ACS COMBINATORIAL SCIENCE 2018; 20:132-136. [PMID: 29338200 DOI: 10.1021/acscombsci.7b00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Peptides are still difficult to synthesize when they contain sterically hindered amino acids, such as α,α-disubstituted amino acids and N-substituted amino acids. In this study, solid-phase syntheses of oligopeptides containing multiple α-aminoisobutyric acid (Aib) residues were performed in high yields by using a nonswellable resin as the solid-support and 3-nitro-1,2,4-triazol-1-yl-tris(pyrrolidin-1-yl)phosphonium hexafluorophosphate (PyNTP) as the condensing reagent.
Collapse
Affiliation(s)
- Rintaro Iwata Hara
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuta Mitsuhashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Keita Saito
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yusuke Maeda
- Course of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takeshi Wada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
23
|
Jad YE, Acosta GA, Naicker T, Ramtahal M, El-Faham A, Govender T, Kruger HG, de la Torre BG, Albericio F. Synthesis and Biological Evaluation of a Teixobactin Analogue. Org Lett 2015; 17:6182-5. [PMID: 26654835 DOI: 10.1021/acs.orglett.5b03176] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first synthesis and biological activity of a teixobactin analogue is reported. Substitution of the unusual L-allo-enduracididine residue by the naturally occurring L-arginine was achieved, and the analogue gave an activity trend similar to that of teixobactin (against Gram-postive bacteria) and meropenem, which was approved by the FDA in 1996. The synthetic route used allows for the synthesis of the natural product as well as the development of a program of medicinal chemistry.
Collapse
Affiliation(s)
| | - Gerardo A Acosta
- Institute for Research in Biomedicine-Barcelona ,08028 Barcelona, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine , Barcelona Science Park, 08028 Barcelona, Spain
| | | | | | - Ayman El-Faham
- Department of Chemistry, Faculty of Science, Alexandria University P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt.,Department of Chemistry, College of Science, King Saud University P.O. Box 2455,Riyadh 11451, Saudi Arabia
| | | | | | | | - Fernando Albericio
- Institute for Research in Biomedicine-Barcelona ,08028 Barcelona, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine , Barcelona Science Park, 08028 Barcelona, Spain.,Department of Chemistry, College of Science, King Saud University P.O. Box 2455,Riyadh 11451, Saudi Arabia.,Department of Organic Chemistry, University of Barcelona , 08028-Barcelona, Spain
| |
Collapse
|
24
|
Gabriel CM, Keener M, Gallou F, Lipshutz BH. Amide and Peptide Bond Formation in Water at Room Temperature. Org Lett 2015; 17:3968-71. [PMID: 26251952 DOI: 10.1021/acs.orglett.5b01812] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A general and environmentally responsible method for the formation of amide/peptide bonds in an aqueous micellar medium is described. Use of uronium salt (1-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylaminomorpholinocarbenium hexafluorophosphate (COMU) as a coupling reagent, 2,6-lutidine, and TPGS-750-M represents mild conditions associated with these valuable types of couplings. The aqueous reaction medium is recyclable leading to low E Factors.
Collapse
Affiliation(s)
- Christopher M Gabriel
- †Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Megan Keener
- †Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | | | - Bruce H Lipshutz
- †Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
25
|
Production and physicochemical assessment of new stevia amino acid sweeteners from the natural stevioside. Food Chem 2015; 173:979-85. [DOI: 10.1016/j.foodchem.2014.10.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/29/2014] [Accepted: 10/09/2014] [Indexed: 11/19/2022]
|
26
|
Jad YE, Khattab SN, de la Torre BG, Govender T, Kruger HG, El-Faham A, Albericio F. EDC·HCl and Potassium Salts of Oxyma and Oxyma-B as Superior Coupling Cocktails for Peptide Synthesis. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Jad YE, Acosta GA, Khattab SN, de la Torre BG, Govender T, Kruger HG, El-Faham A, Albericio F. Peptide synthesis beyond DMF: THF and ACN as excellent and friendlier alternatives. Org Biomol Chem 2015; 13:2393-8. [DOI: 10.1039/c4ob02046d] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To date, DMF has been considered as the only solvent suitable for peptide synthesis.
Collapse
Affiliation(s)
- Yahya E. Jad
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of Kwazulu-Natal
- Durban 4001
- South Africa
| | - Gerardo A. Acosta
- Institute for Research in Biomedicine-Barcelona
- 08028-Barcelona
- Spain
- CIBER-BBN
- Networking Centre on Bioengineering
| | - Sherine N. Khattab
- Department of Chemistry
- Faculty of Science
- Alexandria University
- Alexandria 21321
- Egypt
| | - Beatriz G. de la Torre
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of Kwazulu-Natal
- Durban 4001
- South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of Kwazulu-Natal
- Durban 4001
- South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of Kwazulu-Natal
- Durban 4001
- South Africa
| | - Ayman El-Faham
- Department of Chemistry
- Faculty of Science
- Alexandria University
- Alexandria 21321
- Egypt
| | - Fernando Albericio
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of Kwazulu-Natal
- Durban 4001
- South Africa
| |
Collapse
|
28
|
Guan X, Chaffey PK, Zeng C, Tan Z. New Methods for Chemical Protein Synthesis. Top Curr Chem (Cham) 2014; 363:155-92. [DOI: 10.1007/128_2014_599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|