1
|
Laktsevich-Iskryk M, Hurski A, Ošeka M, Kananovich D. Recent advances in asymmetric synthesis via cyclopropanol intermediates. Org Biomol Chem 2025; 23:992-1015. [PMID: 39670922 DOI: 10.1039/d4ob01746c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Cyclopropanols have attracted significant attention in organic synthesis as versatile three-carbon synthons, as this readily available class of donor-activated cyclopropanes undergoes miscellaneous transformations, either via ring-opening or with retention of the cyclopropane ring. This review summarizes stereoselective and stereoretentive transformations suitable for asymmetric synthesis. The utility of cyclopropanols is discussed for two main strategies: (i) substrate-controlled transformations using enantiomerically enriched cyclopropanol intermediates through a traditional approach, and (ii) the use of nonchiral or racemic cyclopropanols, where asymmetric induction is achieved through a chiral catalyst, representing a direction that has recently emerged.
Collapse
Affiliation(s)
- Marharyta Laktsevich-Iskryk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Alaksiej Hurski
- Republican Scientific Center of Human Issues, Belarusian State University, Minsk 220064, Belarus
- Scientific Testing Center Campilab Ltd., Dynaraŭka 222202, Belarus
| | - Maksim Ošeka
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Dzmitry Kananovich
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| |
Collapse
|
2
|
Konik YA, Kananovich DG. Asymmetric synthesis with titanacyclopropane reagents: From early results to the recent achievements. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Liu Q, You B, Xie G, Wang X. Developments in the construction of cyclopropanols. Org Biomol Chem 2020; 18:191-204. [PMID: 31793614 DOI: 10.1039/c9ob02197c] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ring-opening of cyclopropanols is one of the most active areas of research and it has been well documented in recent years owing to subsequent coupling with various partners, thus providing the facile syntheses of a large number of multifunctional compounds that may otherwise be difficult to access. Evidently, the useful cascade reaction requires easy access to diversely functionalized cyclopropanol substrates. However, developments in the construction of cyclopropanols have not received adequate attention. Herein, recent reports on the formation of cyclopropanols are summarized, and the highly stereoselective production of new promising substrates for the cyclopropanol ring-opening/cross-coupling reactions are introduced and improved syntheses of known cyclopropanols are depicted. This review may facilitate more interesting applications of the cyclopropanol ring-opening/coupling reaction in the synthesis of pharmaceutical compounds, natural products, and structurally more diversified organic synthetic intermediates.
Collapse
Affiliation(s)
- Qiang Liu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | | | | | | |
Collapse
|
4
|
Singh S, Simaan M, Marek I. Pd-Catalyzed Selective Remote Ring Opening of Polysubstituted Cyclopropanols. Chemistry 2018; 24:8553-8557. [PMID: 29694690 DOI: 10.1002/chem.201802016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 12/14/2022]
Abstract
The distant functionalization of ω-ene cyclopropanols is induced by a Pd-catalyzed Heck reaction triggering a "metal-walk" and selective ring-opening of the three-membered ring. This approach provides a new class of acyclic aldehydes possessing concomitantly a stereodefined double bond and a quaternary carbon stereocenter α to the carbonyl group.
Collapse
Affiliation(s)
- Sukhdev Singh
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200009, Israel
| | - Marwan Simaan
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200009, Israel
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200009, Israel
| |
Collapse
|
5
|
Simaan M, Marek I. Asymmetric Catalytic Preparation of Polysubstituted Cyclopropanol and Cyclopropylamine Derivatives. Angew Chem Int Ed Engl 2018; 57:1543-1546. [PMID: 29320599 DOI: 10.1002/anie.201710707] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/23/2017] [Indexed: 01/08/2023]
Abstract
The catalytic asymmetric carbometalation of cyclopropenes followed by either an electrophilic oxidation or amination reaction provides a unique approach to the formation of diastereomerically pure and enantiomerically enriched cyclopropanol and cyclopropylamine derivatives, respectively.
Collapse
Affiliation(s)
- Marwan Simaan
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200009, Israel
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200009, Israel
| |
Collapse
|
6
|
Simaan M, Marek I. Asymmetric Catalytic Preparation of Polysubstituted Cyclopropanol and Cyclopropylamine Derivatives. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710707] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Marwan Simaan
- The Mallat Family Laboratory of Organic Chemistry; Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200009 Israel
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry; Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200009 Israel
| |
Collapse
|
7
|
Durán-Peña MJ, Botubol-Ares JM, Hanson JR, Hernández-Galán R, Collado IG. Titanium carbenoid-mediated cyclopropanation of allylic alcohols: selectivity and mechanism. Org Biomol Chem 2015; 13:6325-32. [PMID: 25968250 DOI: 10.1039/c5ob00544b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method for the chemo- and stereoselective conversion of allylic alcohols into the corresponding cyclopropane derivatives has been developed. The cyclopropanation reaction was carried out with an unprecedented titanium carbenoid generated in situ from Nugent's reagent, manganese and methylene diiodide. The reaction involving the participation of an allylic hydroxyl group, proceeded with conservation of the alkene geometry and in a high diastereomeric excess. The scope, limitations and mechanism of this metal-catalysed reaction are discussed.
Collapse
Affiliation(s)
- M J Durán-Peña
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4° planta, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain.
| | | | | | | | | |
Collapse
|
8
|
Alkoxy-directed cyclopropanation of 1,1-disubstituted alkenes with esters: new approach to quaternary carbon centers. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Xie T, Zhou L, Shen M, Li J, Lv X, Wang X. Diastereoselective synthesis of cis-1,2-disubstituted cyclopropanols and cyclopent-3-enols via SmI2 mediated C–N(Bt) bond cleavage. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Simaan M, Delaye PO, Shi M, Marek I. Cyclopropene Derivatives as Precursors to Enantioenriched Cyclopropanols andn-Butenals Possessing Quaternary Carbon Stereocenters. Angew Chem Int Ed Engl 2015; 54:12345-8. [DOI: 10.1002/anie.201412440] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/26/2015] [Indexed: 11/12/2022]
|
11
|
Simaan M, Delaye PO, Shi M, Marek I. Cyclopropene Derivatives as Precursors to Enantioenriched Cyclopropanols andn-Butenals Possessing Quaternary Carbon Stereocenters. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Shen M, Tu Y, Xie G, Niu Q, Mao H, Xie T, Flowers RA, Lv X, Wang X. Allylsamarium Bromide-Mediated Cascade Cyclization of Homoallylic Esters. Synthesis of 2-(2-Hydroxyalkyl)cyclopropanols and 2-(2-Hydroxyethyl)bicyclo[2.1.1]hexan-1-ols. J Org Chem 2015; 80:52-61. [PMID: 25427109 DOI: 10.1021/jo501797w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In continuation of our previous study on the intramolecular reductive coupling of simple homoallylic esters promoted by allylSmBr/HMPA/H2O, which afforded a facile synthesis of 2-(2-hydroxyalkyl)cyclopropanols, here we report the reductive cascade cyclization of but-3-enyl but-3-enoates mediated by allylSmBr/HMPA/CuCl2·2H2O, in which the two C═C bonds were successively coupled to allow the construction of the structurally interesting bridged bicyclic tertiary alcohols. Thus, the 2-(2-hydroxyethyl)bicyclo[2.1.1]hexan-1-ols were prepared in moderate to good yields with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Mengmeng Shen
- †Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Yawei Tu
- †Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Guanqun Xie
- †Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Qingsheng Niu
- †Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Hui Mao
- †Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Tingting Xie
- †Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Robert A Flowers
- ‡Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Xin Lv
- †Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Xiaoxia Wang
- †Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
13
|
Hermant F, Urbańska E, Seizilles de Mazancourt S, Maubert T, Nicolas E, Six Y. Reductive Alkylation of Thioamides with Grignard Reagents in the Presence of Ti(OiPr)4: Insight and Extension. Organometallics 2014. [DOI: 10.1021/om500603v] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fabien Hermant
- Laboratoire
de Synthèse Organique (DCSO), UMR 7652 CNRS/Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - Ewelina Urbańska
- Laboratoire
de Synthèse Organique (DCSO), UMR 7652 CNRS/Ecole Polytechnique, 91128 Palaiseau Cedex, France
- Faculty
of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
| | | | - Thomas Maubert
- Laboratoire
de Synthèse Organique (DCSO), UMR 7652 CNRS/Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - Emmanuel Nicolas
- Laboratoire
de Chimie Moléculaire (LCM), UMR 9168 CNRS/Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - Yvan Six
- Laboratoire
de Synthèse Organique (DCSO), UMR 7652 CNRS/Ecole Polytechnique, 91128 Palaiseau Cedex, France
| |
Collapse
|