1
|
Zhang B, De Graef S, Nautiyal M, Pang L, Gadakh B, Froeyen M, Van Mellaert L, Strelkov SV, Weeks SD, Van Aerschot A. Family-wide analysis of aminoacyl-sulfamoyl-3-deazaadenosine analogues as inhibitors of aminoacyl-tRNA synthetases. Eur J Med Chem 2018; 148:384-396. [PMID: 29477072 DOI: 10.1016/j.ejmech.2018.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 11/16/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that precisely attach an amino acid to its cognate tRNA. This process, which is essential for protein translation, is considered a viable target for the development of novel antimicrobial agents, provided species selective inhibitors can be identified. Aminoacyl-sulfamoyl adenosines (aaSAs) are potent orthologue specific aaRS inhibitors that demonstrate nanomolar affinities in vitro but have limited uptake. Following up on our previous work on substitution of the base moiety, we evaluated the effect of the N3-position of the adenine by synthesizing the corresponding 3-deazaadenosine analogues (aaS3DAs). A typical organism has 20 different aaRS, which can be split into two distinct structural classes. We therefore coupled six different amino acids, equally targeting the two enzyme classes, via the sulfamate bridge to 3-deazaadenosine. Upon evaluation of the inhibitory potency of the obtained analogues, a clear class bias was noticed, with loss of activity for the aaS3DA analogues targeting class II enzymes when compared to the equivalent aaSA. Evaluation of the available crystallographic structures point to the presence of a conserved water molecule which could have importance for base recognition within class II enzymes, a property that can be explored in future drug design efforts.
Collapse
Affiliation(s)
- Baole Zhang
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000 Leuven, Belgium
| | - Steff De Graef
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000 Leuven, Belgium
| | - Manesh Nautiyal
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000 Leuven, Belgium
| | - Luping Pang
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000 Leuven, Belgium; Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000 Leuven, Belgium
| | - Bharat Gadakh
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000 Leuven, Belgium
| | - Matheus Froeyen
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000 Leuven, Belgium
| | - Lieve Van Mellaert
- Laboratory Molecular Bacteriology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1037, B-3000 Leuven, Belgium
| | - Sergei V Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000 Leuven, Belgium
| | - Stephen D Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000 Leuven, Belgium
| | - Arthur Van Aerschot
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000 Leuven, Belgium.
| |
Collapse
|
2
|
Mairhofer E, Fuchs E, Micura R. Facile synthesis of a 3-deazaadenosine phosphoramidite for RNA solid-phase synthesis. Beilstein J Org Chem 2016; 12:2556-2562. [PMID: 28144324 PMCID: PMC5238537 DOI: 10.3762/bjoc.12.250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022] Open
Abstract
Access to 3-deazaadenosine (c3A) building blocks for RNA solid-phase synthesis represents a severe bottleneck in modern RNA research, in particular for atomic mutagenesis experiments to explore mechanistic aspects of ribozyme catalysis. Here, we report the 5-step synthesis of a c3A phosphoramidite from cost-affordable starting materials. The key reaction is a silyl-Hilbert-Johnson nucleosidation using unprotected 6-amino-3-deazapurine and benzoyl-protected 1-O-acetylribose. The novel path is superior to previously described syntheses in terms of efficacy and ease of laboratory handling.
Collapse
Affiliation(s)
- Elisabeth Mairhofer
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - Elisabeth Fuchs
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| |
Collapse
|
3
|
Bande O, Abu El Asrar R, Braddick D, Dumbre S, Pezo V, Schepers G, Pinheiro VB, Lescrinier E, Holliger P, Marlière P, Herdewijn P. Isoguanine and 5-methyl-isocytosine bases, in vitro and in vivo. Chemistry 2015; 21:5009-22. [PMID: 25684598 PMCID: PMC4531829 DOI: 10.1002/chem.201406392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 11/10/2022]
Abstract
The synthesis, base-pairing properties and in vitro and in vivo characteristics of 5-methyl-isocytosine (isoCMe) and isoguanine (isoG) nucleosides, incorporated in an HNA(h) (hexitol nucleic acid)–DNA(d) mosaic backbone, are described. The required h-isoG phosphoramidite was prepared by a selective deamination as a key step. As demonstrated by Tm measurements the hexitol sugar showed slightly better mismatch discrimination against dT. The d-isoG base mispairing follows the order T>G>C while the h-isoG base mispairing follows the order G>C>T. The h- and d-isoCMe bases mainly mispair with G. Enzymatic incorporation experiments show that the hexitol backbone has a variable effect on selectivity. In the enzymatic assays, isoG misincorporates mainly with T, and isoCMe misincorporates mainly with A. Further analysis in vivo confirmed the patterns of base-pair interpretation for the deoxyribose and hexitol isoCMe/isoG bases in a cellular context, through incorporation of the bases into plasmidic DNA. Results in vivo demonstrated that mispairing and misincorporation was dependent on the backbone scaffold of the base, which indicates rational advances towards orthogonality.
Collapse
Affiliation(s)
- Omprakash Bande
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven (Belgium)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|