1
|
Hettikankanamalage AA, Lassfolk R, Ekholm FS, Leino R, Crich D. Mechanisms of Stereodirecting Participation and Ester Migration from Near and Far in Glycosylation and Related Reactions. Chem Rev 2020; 120:7104-7151. [PMID: 32627532 PMCID: PMC7429366 DOI: 10.1021/acs.chemrev.0c00243] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review is the counterpart of a 2018 Chemical Reviews article (Adero, P. O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich, D. Chem. Rev. 2018, 118, 8242-8284) that examined the mechanisms of chemical glycosylation in the absence of stereodirecting participation. Attention is now turned to a critical review of the evidence in support of stereodirecting participation in glycosylation reactions by esters from either the vicinal or more remote positions. As participation by esters is often accompanied by ester migration, the mechanism(s) of migration are also reviewed. Esters are central to the entire review, which accordingly opens with an overview of their structure and their influence on the conformations of six-membered rings. Next the structure and relative energetics of dioxacarbeniun ions are covered with emphasis on the influence of ring size. The existing kinetic evidence for participation is then presented followed by an overview of the various intermediates either isolated or characterized spectroscopically. The evidence supporting participation from remote or distal positions is critically examined, and alternative hypotheses for the stereodirecting effect of such esters are presented. The mechanisms of ester migration are first examined from the perspective of glycosylation reactions and then more broadly in the context of partially acylated polyols.
Collapse
Affiliation(s)
- Asiri A. Hettikankanamalage
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
| | - Robert Lassfolk
- Johan Gadolin Process Chemistry Centre, Laboratory of Molecular Science and Technology, Åbo Akademi University, 20500 Åbo, Finland
| | - Filip S. Ekholm
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Reko Leino
- Johan Gadolin Process Chemistry Centre, Laboratory of Molecular Science and Technology, Åbo Akademi University, 20500 Åbo, Finland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
2
|
Molla MR, Das P, Guleria K, Subramanian R, Kumar A, Thakur R. Cyanomethyl Ether as an Orthogonal Participating Group for Stereoselective Synthesis of 1,2- trans-β- O-Glycosides. J Org Chem 2020; 85:9955-9968. [PMID: 32600042 DOI: 10.1021/acs.joc.0c01249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stereoselective formation of glycosidic linkages has been the prime focus for contemporary carbohydrate chemistry. Herein, we report cyanomethyl (CNMe) ether as an efficient and effective participating orthogonal protecting group for the stereoselective synthesis of 1,2-trans-β-O-glycosides. The participating group facilitated good to high β-selective glycosylation with a broad range of electron-rich and electron-deficient glycosyl acceptors. Detailed experimental and theoretical studies reveal the involvement of CNMe ether in the formation of a six-membered imine-type cyclic intermediate for the observed stereoselectivity. Rapid incorporation and selective removal of the CNMe ether group in the presence of benzyl ether and isopropylidene acetal protection have also been reported here. The nitrile group provided an opportunity for the glycodiversification through further derivatizations.
Collapse
Affiliation(s)
- Mosidur Rahaman Molla
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar 800005, India
| | - Pradip Das
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar 800005, India
| | - Kanika Guleria
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801103, India
| | - Ranga Subramanian
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801103, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801103, India
| | - Rima Thakur
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar 800005, India
| |
Collapse
|
3
|
Khanam A, Tiwari A, Mandal PK. Chiral auxiliaries: Usefullness in stereoselective glycosylation reactions and their synthetic applications. Carbohydr Res 2020; 495:108045. [PMID: 32679340 DOI: 10.1016/j.carres.2020.108045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023]
Abstract
Oligosaccharides play a very important role in biological system and structure-activity relationships that is why it has a lot of application to medicinal chemistry and development of polysaccharide conjugate vaccines. The stereoselective introduction of a glycosidic linkage presents the principal challenge for biological importance oligosaccharide synthesis. The main aim of this review is to described the importance of chiral auxiliary and neibhouring group participation for the stereoselective 1,2-cis glycosidic bonds formation and their application in complex oligosaccharide synthesis.Numerous 1,2-cis-linked oligosaccharides and glyconjugates are naturally found in the compounds of blood group, human milk, antigens of bacterial lipopolysaccharide etc.that predominantly increased it's importance in this field.
Collapse
Affiliation(s)
- Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Ashwani Tiwari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India; Academy of Scientific and Innovative Research, New Delhi, 110001, India.
| |
Collapse
|
4
|
de Kleijne FFJ, Moons SJ, White PB, Boltje TJ. C-2 auxiliaries for stereoselective glycosylation based on common additive functional groups. Org Biomol Chem 2020; 18:1165-1184. [PMID: 31984407 DOI: 10.1039/c9ob02700a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereoselective introduction of the glycosidic bond is one of the main challenges in chemical oligosaccharide synthesis. Stereoselective glycosylation can be achieved using neighbouring group participation of a C-2 auxiliary or using additives, for example. Both methods aim to generate a defined reactive intermediate that reacts in a stereoselective manner with alcohol nucleophiles. This inspired us to develop new C-2 auxiliaries based on commonly used additive functionalities such as ethers, phosphine oxides and tertiary amides. Good 1,2-trans-selectivity was observed for the phosphine oxide and amide-based auxiliaries expanding the toolbox with new auxiliaries for stereoselective glycosylation reactions.
Collapse
Affiliation(s)
| | - Sam J Moons
- Institute for molecules and materials, Nijmegen, 6525AJ, Netherlands.
| | - Paul B White
- Institute for molecules and materials, Nijmegen, 6525AJ, Netherlands.
| | - Thomas J Boltje
- Institute for molecules and materials, Nijmegen, 6525AJ, Netherlands.
| |
Collapse
|
5
|
Moons SJ, Mensink RA, Bruekers JPJ, Vercammen MLA, Jansen LM, Boltje TJ. α-Selective Glycosylation with β-Glycosyl Sulfonium Ions Prepared via Intramolecular Alkylation. J Org Chem 2019; 84:4486-4500. [PMID: 30808170 PMCID: PMC6454400 DOI: 10.1021/acs.joc.9b00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 02/07/2023]
Abstract
Stereoselective glycosylation remains the main challenge in the chemical synthesis of oligosaccharides. Herein we report a simple method to convert thioglycosides into β-sulfonium ions via an intramolecular alkylation reaction, leading to highly α-selective glycosylations for a variety of glycosyl acceptors. The influence of the thioglycoside substituent and the protecting group pattern on the glycosyl donor was investigated and showed a clear correlation with the observed stereoselectivity.
Collapse
Affiliation(s)
| | | | - Jeroen P. J. Bruekers
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Maurits L. A. Vercammen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Laura M. Jansen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Thomas J. Boltje
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
6
|
Karak M, Joh Y, Suenaga M, Oishi T, Torikai K. 1,2- trans Glycosylation via Neighboring Group Participation of 2- O-Alkoxymethyl Groups: Application to One-Pot Oligosaccharide Synthesis. Org Lett 2019; 21:1221-1225. [PMID: 30693782 DOI: 10.1021/acs.orglett.9b00220] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The use of 2- O-alkoxymethyl groups as effective stereodirecting substituents for the construction of 1,2- trans glycosidic linkages is reported. The observed stereoselectivity arises from the intramolecular formation of a five-membered cyclic architecture between the 2- O-alkoxymethyl substituent and the oxocarbenium ion, which provides the expected facial selectivity. Furthermore, the observed stereocontrol and the extremely high reactivity of 2- O-alkoxymethyl-protected donors allowed development of a one-pot sequential glycosylation strategy that should become a powerful tool for the assembly of oligosaccharides.
Collapse
Affiliation(s)
- Milandip Karak
- Department of Chemistry, Faculty and Graduate School of Science , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Yohei Joh
- Department of Chemistry, Faculty and Graduate School of Science , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Masahiko Suenaga
- Department of Chemistry, Faculty and Graduate School of Science , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Tohru Oishi
- Department of Chemistry, Faculty and Graduate School of Science , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Kohei Torikai
- Department of Chemistry, Faculty and Graduate School of Science , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| |
Collapse
|
7
|
Ho PC, Wang J, Vargas-Baca I. Reagents that Contain Se-H or Te-H Bonds. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Species that contain bonds between hydrogen and selenium or tellurium have a characteristic high reactivity, which can be harnessed in the synthesis of valuable organic compounds. This overview includes the synthesis of dihydrides, alkali metal hydrochalcogenides, chalcogenols, chalcogenocarboxylic and chalcogenocarbamic acids, and their application in reactions of reduction, addition to unsaturated compounds, and nucleophilic substitution.
Collapse
Affiliation(s)
- Peter C. Ho
- Department of Chemistry and Chemical Biology , McMaster University , 1280 Main Street West , Hamilton , Ontario, Canada
| | - Jin Wang
- Department of Chemistry and Chemical Biology , McMaster University , 1280 Main Street West , Hamilton , Ontario, Canada
| | - Ignacio Vargas-Baca
- Department of Chemistry and Chemical Biology , McMaster University , 1280 Main Street West , Hamilton , Ontario, Canada
| |
Collapse
|
8
|
Adero PO, Amarasekara H, Wen P, Bohé L, Crich D. The Experimental Evidence in Support of Glycosylation Mechanisms at the S N1-S N2 Interface. Chem Rev 2018; 118:8242-8284. [PMID: 29846062 PMCID: PMC6135681 DOI: 10.1021/acs.chemrev.8b00083] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A critical review of the state-of-the-art evidence in support of the mechanisms of glycosylation reactions is provided. Factors affecting the stability of putative oxocarbenium ions as intermediates at the SN1 end of the mechanistic continuum are first surveyed before the evidence, spectroscopic and indirect, for the existence of such species on the time scale of glycosylation reactions is presented. Current models for diastereoselectivity in nucleophilic attack on oxocarbenium ions are then described. Evidence in support of the intermediacy of activated covalent glycosyl donors is reviewed, before the influences of the structure of the nucleophile, of the solvent, of temperature, and of donor-acceptor hydrogen bonding on the mechanism of glycosylation reactions are surveyed. Studies on the kinetics of glycosylation reactions and the use of kinetic isotope effects for the determination of transition-state structure are presented, before computational models are finally surveyed. The review concludes with a critical appraisal of the state of the art.
Collapse
Affiliation(s)
- Philip Ouma Adero
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Harsha Amarasekara
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Peng Wen
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Luis Bohé
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 , Université Paris-Sud Université Paris-Saclay , 1 avenue de la Terrasse , 91198 Gif-sur-Yvette , France
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
9
|
Advances in Stereoselective 1,2-cis
Glycosylation using C-2 Auxiliaries. Chemistry 2017; 23:17637-17653. [DOI: 10.1002/chem.201700908] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Indexed: 12/14/2022]
|
10
|
Mensink RA, Elferink H, White PB, Pers N, Rutjes FPJT, Boltje TJ. A Study on Stereoselective Glycosylations via Sulfonium Ion Intermediates. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600898] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rens A. Mensink
- Synthetic organic chemistry; Institute for Molecules and Materials; Heyendaalseweg 135 Nijmegen The Netherlands
| | - Hidde Elferink
- Synthetic organic chemistry; Institute for Molecules and Materials; Heyendaalseweg 135 Nijmegen The Netherlands
| | - Paul B. White
- Synthetic organic chemistry; Institute for Molecules and Materials; Heyendaalseweg 135 Nijmegen The Netherlands
| | - Nathalie Pers
- Synthetic organic chemistry; Institute for Molecules and Materials; Heyendaalseweg 135 Nijmegen The Netherlands
| | - Floris P. J. T. Rutjes
- Synthetic organic chemistry; Institute for Molecules and Materials; Heyendaalseweg 135 Nijmegen The Netherlands
| | - Thomas J. Boltje
- Synthetic organic chemistry; Institute for Molecules and Materials; Heyendaalseweg 135 Nijmegen The Netherlands
| |
Collapse
|
11
|
Huang M, Furukawa T, Retailleau P, Crich D, Bohé L. Further studies on cation clock reactions in glycosylation: observation of a configuration specific intramolecular sulfenyl transfer and isolation and characterization of a tricyclic acetal. Carbohydr Res 2016; 427:21-8. [PMID: 27085740 PMCID: PMC4860153 DOI: 10.1016/j.carres.2016.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022]
Abstract
The use of the 2-O-(2-trimethylsilylmethallyl) group as intramolecular nucleophile and cation clock reaction in the glucopyranose series depends on the nature of the glycosyl donor. As previously reported, with trichloroacetimidates the anticipated intramolecular Sakurai reaction proceeds efficiently and is an effective clock, whereas with sulfoxides complications arise. The source of these complications is now shown to be an intramolecular sulfenyl transfer reaction between the tethered allylsilane and the activated sulfoxide. These results illustrate how a different unimolecular clock reaction may be required for a given cation when it is generated from different donors in order to avoid side reactions. The synthesis and cyclization of a 2-O-(3-hydroxypropyl) glucopyranosyl sulfoxide leading on activation to the formation of a trans-fused acetal is also described. The formation of this crystallographically-established trans-fused acetal is discussed in terms of the high effective concentration of the intramolecular nucleophile which leads to a high degree of a SN2 character in the displacement of the α-glucosyl triflate or at the level of the corresponding α-CIP. The possible use of such intramolecular alcohols as clock reactions and their limitations is discussed.
Collapse
Affiliation(s)
- Min Huang
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Takayuki Furukawa
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| | - Luis Bohé
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Abstract
Anomeric sulfonium ions are attractive glycosyl donors for the stereoselective installation of 1,2-cis glycosides. Although these donors are receiving increasing attention, their mechanism of glycosylation remains controversial. We have investigated the reaction mechanism of glycosylation of a donor modified at C-2 with a (1S)-phenyl-2-(phenylsulfanyl)ethyl chiral auxiliary. Preactivation of this donor results in the formation of a bicyclic β-sulfonium ion that after addition of an alcohol undergoes 1,2-cis-glycosylation. To probe the importance of the thiophenyl moiety, analogs were prepared in which this moiety was replaced by an anisoyl or benzyl moiety. Furthermore, the auxiliaries were installed as S- and R-stereoisomers. It was found that the nature of the heteroatom and chirality of the auxiliary greatly influenced the anomeric outcome and only the one containing a thiophenyl moiety and having S-configuration gave consistently α-anomeric products. The sulfonium ions are sufficiently stable at a temperature at which glycosylations proceed indicating that they are viable glycosylation agents. Time-course NMR experiments with the latter donor showed that the initial rates of glycosylations increase with increases in acceptor concentration and the rate curves could be fitted to a second order rate equation. Collectively, these observations support a mechanism by which a sulfonium ion intermediate is formed as a trans-decalin ring system that can undergo glycosylation through a bimolecular mechanism. DFT calculations have provided further insight into the reaction path of glycosylation and indicate that initially a hydrogen-bonded complex is formed between sulfonium ion and acceptor that undergoes SN2-like glycosylation to give an α-anomeric product.
Collapse
Affiliation(s)
- Tao Fang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Yi Gu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Wei Huang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
13
|
Watson AJA, Alexander SR, Cox DJ, Fairbanks AJ. Protecting Group Dependence of Stereochemical Outcome of Glycosylation of 2-O-(Thiophen-2-yl)methyl Ether Protected Glycosyl Donors. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Qiao Y, Ge W, Jia L, Hou X, Wang Y, Pedersen CM. Glycosylation intermediates studied using low temperature1H- and19F-DOSY NMR: new insight into the activation of trichloroacetimidates. Chem Commun (Camb) 2016; 52:11418-11421. [DOI: 10.1039/c6cc05272j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low temperature1H- and19F-DOSY have been used for analyzing reactive intermediates in glycosylation reactions, where a glycosyl trichloroacetimidate donor has been activated using different catalysts.
Collapse
Affiliation(s)
- Yan Qiao
- Analytical Instrumentation Center & State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Wenzhi Ge
- Analytical Instrumentation Center & State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Lingyu Jia
- Shanxi Engineering Research Center of Biorefinery
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Xianglin Hou
- Shanxi Engineering Research Center of Biorefinery
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Yingxiong Wang
- Shanxi Engineering Research Center of Biorefinery
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | | |
Collapse
|
15
|
Wen P, Crich D. Absence of Stereodirecting Participation by 2-O-Alkoxycarbonylmethyl Ethers in 4,6-O-Benzylidene-Directed Mannosylation. J Org Chem 2015; 80:12300-10. [PMID: 26565923 PMCID: PMC4684826 DOI: 10.1021/acs.joc.5b02203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation of a series of mannopyranosyl donors carrying 2-O-(2-oxoalkyl) ethers and their use in glycosylation reactions are described. The formation of cyclic products with the simple 2-O-phenacyl ether and with the 2-O-(t-butoxycarbonylmethyl) ether establishes the stereoelectronic feasibility of participation in such systems. The high β-selectivities observed with the bis-trifluoromethyl phenacyl ether indicate that participation can be suppressed through the introduction of electron-withdrawing substituents. The high β-selectivities and absence of cyclic products observed with the 2-O-(methoxycarbonylmethyl) ether exclude the effective participation of esters through six-membered cyclic intermediates in this series. The results are discussed in terms of the conformation of cyclic dioxenium ions (E,E-, E,Z-, or Z,Z-) and in the context of "neighboring group" participation by nonvicinal esters in glycosylation. Methods for the deprotection of the 2-O-phenacyl and 2-O-(methoxycarbonylmethyl) ethers are described.
Collapse
Affiliation(s)
- Peng Wen
- Department of Chemistry, Wayne State University, Detroit, MI 48202,
USA
| | - David Crich
- Department of Chemistry, Wayne State University, Detroit, MI 48202,
USA
| |
Collapse
|
16
|
Chu AHA, Minciunescu A, Bennett CS. Aryl(trifluoroethyl)iodonium Triflimide and Nitrile Solvent Systems: A Combination for the Stereoselective Synthesis of Armed 1,2-trans-β-Glycosides at Noncryogenic Temperatures. Org Lett 2015; 17:6262-5. [DOI: 10.1021/acs.orglett.5b03282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- An-Hsiang Adam Chu
- Department
of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Andrei Minciunescu
- Department
of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Clay S. Bennett
- Department
of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
17
|
Traboni S, Bedini E, Giordano M, Iadonisi A. Three Solvent-Free Catalytic Approaches to the Acetal Functionalization of Carbohydrates and Their Applicability to One-Pot Generation of Orthogonally Protected Building Blocks. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500745] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Singh GP, Watson AJA, Fairbanks AJ. Achiral 2-Hydroxy Protecting Group for the Stereocontrolled Synthesis of 1,2-cis-α-Glycosides by Six-Ring Neighboring Group Participation. Org Lett 2015; 17:4376-9. [PMID: 26308903 DOI: 10.1021/acs.orglett.5b02226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosylation of a fully armed donor bearing a 2-O-(trimethoxybenzenethiol) ethyl ether protecting group is completely α-selective with a range of carbohydrate alcohol acceptors. Low-temperature NMR studies confirm the intermediacy of cyclic sulfonium ion intermediates arising from six-membered β-sulfonium ring neighboring group participation. Selective protecting group removal is achieved in high yield in a single operation by S-methylation and base-induced β-elimination.
Collapse
Affiliation(s)
- Govind P Singh
- Department of Chemistry and ‡Biomolecular Interaction Centre, University of Canterbury , Private Bag 4800, Christchurch 8140, New Zealand
| | - Andrew J A Watson
- Department of Chemistry and ‡Biomolecular Interaction Centre, University of Canterbury , Private Bag 4800, Christchurch 8140, New Zealand
| | - Antony J Fairbanks
- Department of Chemistry and ‡Biomolecular Interaction Centre, University of Canterbury , Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
19
|
Adero PO, Furukawa T, Huang M, Mukherjee D, Retailleau P, Bohé L, Crich D. Cation Clock Reactions for the Determination of Relative Reaction Kinetics in Glycosylation Reactions: Applications to Gluco- and Mannopyranosyl Sulfoxide and Trichloroacetimidate Type Donors. J Am Chem Soc 2015; 137:10336-45. [PMID: 26207807 PMCID: PMC4545385 DOI: 10.1021/jacs.5b06126] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of a cation clock method based on the intramolecular Sakurai reaction for probing the concentration dependence of the nucleophile in glycosylation reactions is described. The method is developed for the sulfoxide and trichloroacetimidate glycosylation protocols. The method reveals that O-glycosylation reactions have stronger concentration dependencies than C-glycosylation reactions consistent with a more associative, S(N)2-like character. For the 4,6-O-benzylidene-directed mannosylation reaction a significant difference in concentration dependence is found for the formation of the β- and α-anomers, suggesting a difference in mechanism and a rationale for the optimization of selectivity regardless of the type of donor employed. In the mannose series the cyclization reaction employed as clock results in the formation of cis and trans-fused oxabicyclo[4,4,0]decanes as products with the latter being strongly indicative of the involvement of a conformationally mobile transient glycosyl oxocarbenium ion. With identical protecting group arrays cyclization in the glucopyranose series is more rapid than in the mannopyranose manifold. The potential application of related clock reactions in other carbenium ion-based branches of organic synthesis is considered.
Collapse
Affiliation(s)
- Philip O. Adero
- Department of Chemistry, Wayne State University, 5101 Cass Avenue Detroit, MI 48202, USA
| | - Takayuki Furukawa
- Department of Chemistry, Wayne State University, 5101 Cass Avenue Detroit, MI 48202, USA
| | - Min Huang
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Debaraj Mukherjee
- Department of Chemistry, Wayne State University, 5101 Cass Avenue Detroit, MI 48202, USA
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Luis Bohé
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue Detroit, MI 48202, USA
| |
Collapse
|
20
|
Ono F, Hirata O, Ichimaru K, Saruhashi K, Watanabe H, Shinkai S. Mild One-Step Synthesis of 4,6-Benzylideneglycopyranosides from Aromatic Aldehydes and Gelation Abilities of the Glucose Derivatives. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Frihed TG, Bols M, Pedersen CM. Mechanisms of Glycosylation Reactions Studied by Low-Temperature Nuclear Magnetic Resonance. Chem Rev 2015; 115:4963-5013. [DOI: 10.1021/cr500434x] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|