1
|
Tyurin VS, Shkirdova AO, Koifman OI, Zamilatskov IA. Meso-Formyl, Vinyl, and Ethynyl Porphyrins-Multipotent Synthons for Obtaining a Diverse Array of Functional Derivatives. Molecules 2023; 28:5782. [PMID: 37570752 PMCID: PMC10421532 DOI: 10.3390/molecules28155782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
This review presents a strategy for obtaining various functional derivatives of tetrapyrrole compounds based on transformations of unsaturated carbon-oxygen and carbon-carbon bonds of the substituents at the meso position (meso-formyl, vinyl, and ethynyl porphyrins). First, synthetic approaches to the preparation of these precursors are described. Then diverse pathways for the transformations of the multipotent synthons are discussed, revealing a variety of products of such reactions. The structures, electronic, and optical properties of the compounds obtained by the methods under consideration are analyzed. In addition, there is an overview of the applications of the products obtained. Biomedical use of the compounds is among the most important. Finally, the advantages of using the reviewed synthetic strategy to obtain dyes with targeted properties are highlighted.
Collapse
Affiliation(s)
- Vladimir S. Tyurin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alena O. Shkirdova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Oscar I. Koifman
- Department of Chemistry and Technology of Macromolecular Compounds, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia;
| | - Ilya A. Zamilatskov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
2
|
Wu Y, Liu YY, Liu HK, Yu SB, Lin F, Zhou W, Wang H, Zhang DW, Li ZT, Ma D. Flexible organic frameworks sequester neuromuscular blocking agents in vitro and reverse neuromuscular block in vivo. Chem Sci 2022; 13:9243-9248. [PMID: 36093029 PMCID: PMC9384803 DOI: 10.1039/d2sc02456j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Supramolecular sequestration and reversal of neuromuscular block (NMB) have great clinical applications. Water-soluble flexible organic frameworks (FOFs) cross-linked by disulfide bonds are designed and prepared. Different linker lengths are introduced to FOFs to give them varied pore sizes. FOFs are anionic nanoscale polymers and capable of encapsulating cationic neuromuscular blocking agents (NMBAs), including rocuronium (Roc), vecuronium (Vec), pancuronium (Panc) and cisatracurium (Cis). A host–guest study confirms that FOFs bind NMBAs in water. The multivalency interaction between FOFs and NMBAs is able to sequester NMBAs, and prevent them from escaping. These FOFs are non-toxic and biocompatible. Animal studies show that FOFs are effective for the reversal of NMB induced by Roc, Vec and Cis, which shorten the time to a train-of-four ratio of 0.9 by 2.6, 3.8 and 5.7-fold compared to a placebo, respectively. Water-soluble flexible organic frameworks are prepared and used to sequester neuromuscular blocking agents, and reverse their neuromuscular block in vivo.![]()
Collapse
Affiliation(s)
- Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Yue-Yang Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Hong-Kun Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Furong Lin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue, Jiaojiang Zhejiang 318000 China
| |
Collapse
|
3
|
Schätti J, Köhler V, Mayor M, Fein YY, Geyer P, Mairhofer L, Gerlich S, Arndt M. Matter-wave interference and deflection of tripeptides decorated with fluorinated alkyl chains. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4514. [PMID: 32363659 PMCID: PMC7317408 DOI: 10.1002/jms.4514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Studies of neutral biomolecules in the gas phase allow for the study of molecular properties in the absence of solvent and charge effects, thus complementing spectroscopic and analytical methods in solution or in ion traps. Some properties, such as the static electronic susceptibility, are best accessed in experiments that act on the motion of the neutral molecules in an electric field. Here, we screen seven peptides for their thermal stability and electron impact ionizability. We identify two tripeptides as sufficiently volatile and thermostable to be evaporated and interfered in the long-baseline universal matter-wave interferometer. Monitoring the deflection of the interferometric molecular nanopattern in a tailored external electric field allows us to measure the static molecular susceptibility of Ala-Trp-Ala and Ala-Ala-Trp bearing fluorinated alkyl chains at C- and N-termini. The respective values are 4 π ε 0 × 330 ± 150 Å 3 and 4 π ε 0 × 270 ± 80 Å 3 .
Collapse
Affiliation(s)
- Jonas Schätti
- Department of ChemistryUniversity of BaselCH‐St. Johannsring 1Basel4056Switzerland
| | - Valentin Köhler
- Department of ChemistryUniversity of BaselCH‐St. Johannsring 1Basel4056Switzerland
| | - Marcel Mayor
- Department of ChemistryUniversity of BaselCH‐St. Johannsring 1Basel4056Switzerland
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1, 76344Eggenstein‐LeopoldshafenGermany
- Lehn Institute of Functional Materials (LIFM)Sun Yat‐Sen University (SYSU)XinGangXi Rd. 135, 510275GuangzhouChina
| | - Yaakov Y. Fein
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5, 1090ViennaAustria
| | - Philipp Geyer
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5, 1090ViennaAustria
| | - Lukas Mairhofer
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5, 1090ViennaAustria
| | - Stefan Gerlich
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5, 1090ViennaAustria
| | - Markus Arndt
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5, 1090ViennaAustria
| |
Collapse
|
4
|
2,4,6-Tris(4-Iodophenyl)-1,3,5-trimethylbenzene. MOLBANK 2020. [DOI: 10.3390/m1121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
2,4,6-Tris(4-iodophenyl)-1,3,5-trimethylbenzene was synthesized from 2,4,6-triphenyl-1,3,5-trimethylbenzene, using [bis(trifluoroacetoxy)iodo]benzene as the iodinating agent. The title compound was characterized by means of NMR, IR, and mass spectrometry, as well as TG analysis.
Collapse
|
5
|
Zaręba JK. Tetraphenylmethane and tetraphenylsilane as building units of coordination polymers and supramolecular networks – A focus on tetraphosphonates. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Schätti J, Sezer U, Pedalino S, Cotter JP, Arndt M, Mayor M, Köhler V. Tailoring the volatility and stability of oligopeptides. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:550-556. [PMID: 28608445 PMCID: PMC5601229 DOI: 10.1002/jms.3959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
Amino acids are essential building blocks of life, and fluorinated derivatives have gained interest in chemistry and medicine. Modern mass spectrometry has enabled the study of oligo- and polypeptides as isolated entities in the gas phase, but predominantly as singly or even multiply charged species. While laser desorption of neutral peptides into adiabatically expanding supersonic noble gas jets is possible, UV-VIS spectroscopy, electric or magnetic deflectometry as well as quantum interferometry would profit from the possibility to prepare thermally slow molecular beams. This has typically been precluded by the fragility of the peptide bond and the fact that a peptide would rather 'fry', i.e. denature and fragment than 'fly'. Here, we explore how tailored perfluoroalkyl functionalization can reduce the intermolecular binding and thus increase the volatility of peptides and compare it to previously explored methylation, acylation and amidation of peptides. We show that this strategy is essential and enables the formation of thermal beams of intact neutral tripeptides, whereas only fragments were observed for an extensively fluoroalkyl-decorated nonapeptide. © 2017 The Authors. Journal of Mass Spectrometry Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- J. Schätti
- University of BaselDepartment of ChemistryBasel4056Switzerland
| | - U. Sezer
- University of ViennaFaculty of PhysicsBoltzmanngasse 51090ViennaAustria
| | - S. Pedalino
- University of ViennaFaculty of PhysicsBoltzmanngasse 51090ViennaAustria
| | - J. P. Cotter
- University of ViennaFaculty of PhysicsBoltzmanngasse 51090ViennaAustria
| | - M. Arndt
- University of ViennaFaculty of PhysicsBoltzmanngasse 51090ViennaAustria
| | - M. Mayor
- University of BaselDepartment of ChemistryBasel4056Switzerland
- Karlsruhe Institute of TechnologyInstitute for NanotechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - V. Köhler
- University of BaselDepartment of ChemistryBasel4056Switzerland
| |
Collapse
|
7
|
Sezer U, Wörner L, Horak J, Felix L, Tüxen J, Götz C, Vaziri A, Mayor M, Arndt M. Laser-induced acoustic desorption of natural and functionalized biochromophores. Anal Chem 2015; 87:5614-9. [PMID: 25946522 PMCID: PMC4455108 DOI: 10.1021/acs.analchem.5b00601] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Laser-induced acoustic desorption
(LIAD) has recently been established
as a tool for analytical chemistry. It is capable of launching intact,
neutral, or low charged molecules into a high vacuum environment.
This makes it ideally suited to mass spectrometry. LIAD can be used
with fragile biomolecules and very massive compounds alike. Here,
we apply LIAD time-of-flight mass spectrometry (TOF-MS) to the natural
biochromophores chlorophyll, hemin, bilirubin, and biliverdin and
to high mass fluoroalkyl-functionalized porphyrins. We characterize
the variation in the molecular fragmentation patterns as a function
of the desorption and the VUV postionization laser intensity. We find
that LIAD can produce molecular beams an order of magnitude slower
than matrix-assisted laser desorption (MALD), although this depends
on the substrate material. Using titanium foils we observe a most
probable velocity of 20 m/s for functionalized molecules with a mass m = 10 000 Da.
Collapse
Affiliation(s)
- Uğur Sezer
- †University of Vienna, Faculty of Physics, VCQ and QuNaBioS, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Lisa Wörner
- †University of Vienna, Faculty of Physics, VCQ and QuNaBioS, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Johannes Horak
- †University of Vienna, Faculty of Physics, VCQ and QuNaBioS, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Lukas Felix
- ‡University of Basel, Department of Chemistry, St. Johannsring 19, 4056 Basel, Switzerland
| | - Jens Tüxen
- ‡University of Basel, Department of Chemistry, St. Johannsring 19, 4056 Basel, Switzerland
| | - Christoph Götz
- §University of Vienna, Max F. Perutz Laboratories, Research Institute of Molecular Pathology, QuNaBioS, Doktor-Bohr-Gasse 7, 1030 Vienna, Austria
| | - Alipasha Vaziri
- §University of Vienna, Max F. Perutz Laboratories, Research Institute of Molecular Pathology, QuNaBioS, Doktor-Bohr-Gasse 7, 1030 Vienna, Austria
| | - Marcel Mayor
- ‡University of Basel, Department of Chemistry, St. Johannsring 19, 4056 Basel, Switzerland.,∥Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Markus Arndt
- †University of Vienna, Faculty of Physics, VCQ and QuNaBioS, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
8
|
Sezer U, Schmid P, Felix L, Mayor M, Arndt M. Stability of high-mass molecular libraries: the role of the oligoporphyrin core. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:235-239. [PMID: 25601698 PMCID: PMC4322477 DOI: 10.1002/jms.3526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/19/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
Molecular beam techniques are a key to many experiments in physical chemistry and quantum optics. In particular, advanced matter-wave experiments with high-mass molecules profit from the availability of slow, neutral and mass-selected molecular beams that are sufficiently stable to remain intact during laser heating and photoionization mass spectrometry. We present experiments on the photostability with molecular libraries of tailored oligoporphyrins with masses up to 25,000 Da. We compare two fluoroalkylsulfanyl-functionalized libraries based on two different molecular cores that offer the same number of anchor points for functionalization but differ in their geometry and electronic properties. A pentaporphyrin core stabilizes a library of chemically well-defined molecules with more than 1600 atoms. They can be neutrally desorbed with velocities as low as 20 m/s and efficiently analyzed in photoionization mass spectrometry.
Collapse
Affiliation(s)
- Uĝur Sezer
- University of Vienna, Faculty of Physics, VCQ and QuNaBioSBoltzmanngasse 5, 1090, Vienna, Austria
| | - Philipp Schmid
- University of Vienna, Faculty of Physics, VCQ and QuNaBioSBoltzmanngasse 5, 1090, Vienna, Austria
| | - Lukas Felix
- Department of Chemistry, University of BaselSt. Johannsring 19, 4056, Basel, Switzerland
| | - Marcel Mayor
- Department of Chemistry, University of BaselSt. Johannsring 19, 4056, Basel, Switzerland
- Karlsruhe Institute of Technology (KIT), Institute of NanotechnologyP.O. Box 3640, 76021, Karlsruhe
| | - Markus Arndt
- University of Vienna, Faculty of Physics, VCQ and QuNaBioSBoltzmanngasse 5, 1090, Vienna, Austria
| |
Collapse
|