1
|
Becht A, Frączyk J, Waśko J, Menaszek E, Kajdanek J, Miłowska K, Kolesinska B. Selection of collagen IV fragments forming the outer sphere of the native protein: Assessment of biological activity for regenerative medicine. J Pept Sci 2024; 30:e3537. [PMID: 37607826 DOI: 10.1002/psc.3537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
The aim of this research was to select the fragments that make up the outer layer of the collagen IV (COL4A6) protein and to assess their potential usefulness for regenerative medicine. It was expected that because protein-protein interactions take place via contact between external domains, the set of peptides forming the outer sphere of collagen IV will determine its interaction with other proteins. Cellulose-immobilized protein fragment libraries treated with polyclonal anti-collagen IV antibodies were used to select the peptides forming the outer sphere of collagen IV. In the first test, 33 peptides that strongly interacted with the polyclonal anti-collagen IV antibodies were selected from a library of non-overlapping fragments of collagen IV. The selected fragments of collagen IV (cleaved from the cellulose matrix) were tested for their cytotoxicity, their effects on cell viability and proliferation, and their impact on the formation of reactive oxygen species (ROS). The studies used RAW 264.7 mouse macrophage cells and Hs 680.Tr human fibroblasts. PrestoBlue, ToxiLight™, and ToxiLight 100% Lysis Control assays were conducted. The viability of fibroblasts cultured with the addition of increasing concentrations of the peptide mix did not show statistically significant differences from the control. Fragments 161-170, 221-230, 721-730, 1331-1340, 1521-1530, and 1661-1670 of COL4A6 were examined for cytotoxicity against BJ normal human foreskin fibroblasts. None of the collagen fragments were found to be cytotoxic. Further research is underway on the potential uses of collagen IV fragments in regenerative medicine.
Collapse
Affiliation(s)
- Angelika Becht
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Justyna Frączyk
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Joanna Waśko
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Elżbieta Menaszek
- Department of Cytobiology, Chair of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Jakub Kajdanek
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Beata Kolesinska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
2
|
Wasko J, Wolszczak M, Zajaczkowska Z, Dudek M, Kolesinska B. Human serum albumin as a potential drug delivery system for N-methylated hot spot insulin analogs inhibiting hormone aggregation. Bioorg Chem 2024; 143:107104. [PMID: 38194903 DOI: 10.1016/j.bioorg.2024.107104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
The purpose of this study was to investigate whether Human Serum Albumin (HSA) can bind N-methylated analogs of hot spots of native insulin. Three N-methylated derivatives of the A13-A19 fragment of native insulin were used: L(N-Me)YQLENY (1), LYQ(N-Me)LENY (2), and L(N-Me)YQ(N-Me)LENY (3). The studied N-methylated insulin fragments possess inhibiting potential against hormone aggregation. A variety of research techniques, including spectroscopic methods and microscopy assays, were used to study the interaction of HSA with the N-methylated insulin fragments. Based on spectroscopic measurements with Congo Red and Thioflavin T, all the analyzed N-methylated peptides were able to interact with the HSA surface. The CD spectrum registered for HSA in the presence of L(N-Me)YQLENY showed the smallest content of α-helix conformation, indicating the most compact HSA structure. Based on the results of MST, the dissociation constants (Kd) for complexes of HSA and peptides 1-3 were 19.2 nM (complex 1), 15.6 nM (complex 2), and 8.07 nM (complex 3). Microscopy assays, dynamic light scattering measurements as well as computer simulation of protein-ligand interaction also confirmed the possibility of docking the N-methylated inhibitors within HSA.
Collapse
Affiliation(s)
- Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Poland.
| | - Marian Wolszczak
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, Poland.
| | - Zuzanna Zajaczkowska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Poland.
| | - Mariusz Dudek
- Institute of Materials Science and Engineering, The Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, Poland.
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Poland.
| |
Collapse
|
3
|
Czerczak-Kwiatkowska K, Kaminska M, Fraczyk J, Majsterek I, Kolesinska B. Searching for EGF Fragments Recreating the Outer Sphere of the Growth Factor Involved in Receptor Interactions. Int J Mol Sci 2024; 25:1470. [PMID: 38338748 PMCID: PMC10855902 DOI: 10.3390/ijms25031470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The aims of this study were to determine whether it is possible to use peptide microarrays obtained using the SPOT technique (immobilized on cellulose) and specific polyclonal antibodies to select fragments that reconstruct the outer sphere of proteins and to ascertain whether the selected peptide fragments can be useful in the study of their protein-protein and/or peptide-protein interactions. Using this approach, epidermal growth factor (EGF) fragments responsible for the interaction with the EGF receptor were searched. A library of EGF fragments immobilized on cellulose was obtained using triazine condensing reagents. Experiments on the interactions with EGFR confirmed the high affinity of the selected peptide fragments. Biological tests on cells showed the lack of cytotoxicity of the EGF fragments. Selected EGF fragments can be used in various areas of medicine.
Collapse
Affiliation(s)
- Katarzyna Czerczak-Kwiatkowska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| | - Marta Kaminska
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland;
| | - Justyna Fraczyk
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland;
| | - Beata Kolesinska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| |
Collapse
|
4
|
Magdziarz S, Boguń M, Frączyk J. Coating Methods of Carbon Nonwovens with Cross-Linked Hyaluronic Acid and Its Conjugates with BMP Fragments. Polymers (Basel) 2023; 15:polym15061551. [PMID: 36987331 PMCID: PMC10054264 DOI: 10.3390/polym15061551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The cross-linking of polysaccharides is a universal approach to affect their structure and physical properties. Both physical and chemical methods are used for this purpose. Although chemical cross-linking provides good thermal and mechanical stability for the final products, the compounds used as stabilizers can affect the integrity of the cross-linked substances or have toxic properties that limit the applicability of the final products. These risks might be mitigated by using physically cross-linked gels. In the present study, we attempted to obtain hybrid materials based on carbon nonwovens with a layer of cross-linked hyaluronan and peptides that are fragments of bone morphogenetic proteins (BMPs). A variety of cross-linking procedures and cross-linking agents (1,4-butanediamine, citric acid, and BDDE) were tested to find the most optimal method to coat the hydrophobic carbon nonwovens with a hydrophilic hyaluronic acid (HA) layer. Both the use of hyaluronic acid chemically modified with BMP fragments and a physical modification approach (layer-by-layer method) were proposed. The obtained hybrid materials were tested with the spectrometric (MALDI-TOF MS) and spectroscopic methods (IR and 1H-NMR). It was found that the chemical cross-linking of polysaccharides is an effective method for the deposition of a polar active substance on the surface of a hydrophobic carbon nonwoven fabric and that the final material is highly biocompatible.
Collapse
Affiliation(s)
- Sylwia Magdziarz
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Maciej Boguń
- Łukasiewicz-Lodz Institute of Technology, Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| | - Justyna Frączyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
5
|
Kolasa M, Czerczak K, Fraczyk J, Szymanski L, Lewicki S, Bednarowicz A, Tarzynska N, Sikorski D, Szparaga G, Draczynski Z, Cierniak S, Brzoskowska U, Galita G, Majsterek I, Bociaga D, Krol P, Kolesinska B. Evaluation of Polysaccharide-Peptide Conjugates Containing the RGD Motif for Potential Use in Muscle Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6432. [PMID: 36143745 PMCID: PMC9503514 DOI: 10.3390/ma15186432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
New scaffold materials composed of biodegradable components are of great interest in regenerative medicine. These materials should be: stable, nontoxic, and biodegrade slowly and steadily, allowing the stable release of biodegradable and biologically active substances. We analyzed peptide-polysaccharide conjugates derived from peptides containing RGD motif (H-RGDS-OH (1), H-GRGDS-NH2 (2), and cyclo(RGDfC) (3)) and polysaccharides as scaffolds to select the most appropriate biomaterials for application in regenerative medicine. Based on the results of MTT and Ki-67 assays, we can state that the conjugates containing calcium alginate and the ternary nonwoven material were the most supportive of muscle tissue regeneration. Scanning electron microscopy imaging and light microscopy studies with hematoxylin-eosin staining showed that C2C12 cells were able to interact with the tested peptide-polysaccharide conjugates. The release factor (Q) varied depending on both the peptide and the structure of the polysaccharide matrix. LDH, Alamarblue®, Ki-67, and cell cycle assays indicated that peptides 1 and 2 were characterized by the best biological properties. Conjugates containing chitosan and the ternary polysaccharide nonwoven with peptide 1 exhibited very high antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae. Overall, the results of the study suggested that polysaccharide conjugates with peptides 1 and 2 can be potentially used in regenerative medicine.
Collapse
Affiliation(s)
- Marcin Kolasa
- Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - Katarzyna Czerczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Lukasz Szymanski
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland
| | - Slawomir Lewicki
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland
| | - Anna Bednarowicz
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Nina Tarzynska
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Dominik Sikorski
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Grzegorz Szparaga
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Zbigniew Draczynski
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | | | | | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Dorota Bociaga
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
| | - Paulina Krol
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
6
|
Synthesis and Hemostatic Activity of New Amide Derivatives. Molecules 2022; 27:molecules27072271. [PMID: 35408669 PMCID: PMC9000710 DOI: 10.3390/molecules27072271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022] Open
Abstract
Eight dipeptides containing antifibrinolytic agents (tranexamic acid, aminocaproic acid, 4-(aminomethyl)benzoic acid, and glycine—natural amino acids) were synthesized in a three-step process with good or very good yields. DMT/NMM/TsO− (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate) was used as a coupling reagent. Hemolysis tests were used to study the effects of the dipeptides on blood components. Blood plasma clotting tests were used to examine their effects on thrombin time (TT), prothrombin time (PT), and the activated partial thromboplastin time (aPTT). The level of hemolysis did not exceed 1%. In clotting tests, TT, PT, and aPTT did not differentiate any of the compounds. The prothrombin times for all amides 1–8 were similar. The obtained results in the presence of amides 1–4 and 8 were slightly lower than for the other compounds and the positive control, and they were similar to the results obtained for TA. In the case of amide 3, a significantly decreased aPTT was observed. The aPTTs observed for plasma treated with amide 3 and TA were comparable. In the case of amide 6 and 8, TT values significantly lower than for the other compounds were found. The clot formation and fibrinolysis (CFF) assay was used to assess the influence of the dipeptides on the blood plasma coagulation cascade and the fibrinolytic efficiency of the blood plasma. In the clot formation and fibrinolysis assay, amides 5 and 7 were among the most active compounds. The cytotoxicity and genotoxicity of the synthesized dipeptides were evaluated on the monocyte/macrophage peripheral blood cell line. The dipeptides did not cause hemolysis at any concentrations. They exhibited no significant cytotoxic effect on SC cells and did not induce significant DNA damage.
Collapse
|
7
|
Kolasa M, Galita G, Majsterek I, Kucharska E, Czerczak K, Wasko J, Becht A, Fraczyk J, Gajda A, Pietrzak L, Szymanski L, Krakowiak A, Draczynski Z, Kolesinska B. Screening of Self-Assembling of Collagen IV Fragments into Stable Structures Potentially Useful in Regenerative Medicine. Int J Mol Sci 2021; 22:13584. [PMID: 34948383 PMCID: PMC8708666 DOI: 10.3390/ijms222413584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the research was to check whether it is possible to use fragments of type IV collagen to obtain, as a result of self-assembling, stable spatial structures that could be used to prepare new materials useful in regenerative medicine. Collagen IV fragments were obtained by using DMT/NMM/TosO- as a coupling reagent. The ability to self-organize and form stable spatial structures was tested by the CD method and microscopic techniques. Biological studies covered: resazurin assay (cytotoxicity assessment) on BJ, BJ-5TA and C2C12 cell lines; an alkaline version of the comet assay (genotoxicity), Biolegend Legendplex human inflammation panel 1 assay (SC cell lines, assessment of the inflammation activity) and MTT test to determine the cytotoxicity of the porous materials based on collagen IV fragments. It was found that out of the pool of 37 fragments (peptides 1-33 and 2.1-2.4) reconstructing the outer sphere of collagen IV, nine fragments (peptides: 2, 4, 5, 6, 14, 15, 25, 26 and 30), as a result of self-assembling, form structures mimicking the structure of the triple helix of native collagens. The stability of spatial structures formed as a result of self-organization at temperatures of 4 °C, 20 °C, and 40 °C was found. The application of the MST method allowed us to determine the Kd of binding of selected fragments of collagen IV to ITGα1β1. The stability of the spatial structures of selected peptides made it possible to obtain porous materials based on their equimolar mixture. The formation of the porous materials was found for cross-linked structures and the material stabilized only by weak interactions. All tested peptides are non-cytotoxic against all tested cell lines. Selected peptides also showed no genotoxicity and no induction of immune system responses. Research on the use of porous materials based on fragments of type IV collagen, able to form stable spatial structures as scaffolds useful in regenerative medicine, will be continued.
Collapse
Affiliation(s)
- Marcin Kolasa
- General Command of the Polish Armed Forces, Medical Division, Zwirki i Wigury 103/105, 00-912 Warsaw, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (G.G.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (G.G.); (I.M.)
| | - Ewa Kucharska
- Department Geriatrics and Social Work, Jesuit University Ignatianum in Cracow, Kopernika 26, 31-501 Krakow, Poland;
| | - Katarzyna Czerczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Angelika Becht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Anna Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Lukasz Pietrzak
- Institute of Mechatronics and Information Systems, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland; (L.P.); (L.S.)
| | - Lukasz Szymanski
- Institute of Mechatronics and Information Systems, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland; (L.P.); (L.S.)
| | - Agnieszka Krakowiak
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Zbigniew Draczynski
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| |
Collapse
|
8
|
Synthesis and Properties of Targeted Radioisotope Carriers Based on Poly(Acrylic Acid) Nanogels. Pharmaceutics 2021; 13:pharmaceutics13081240. [PMID: 34452201 PMCID: PMC8400054 DOI: 10.3390/pharmaceutics13081240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/01/2022] Open
Abstract
Radiation crosslinking was employed to obtain nanocarriers based on poly(acrylic acid)—PAA—for targeted delivery of radioactive isotopes. These nanocarriers are internally crosslinked hydrophilic macromolecules—nanogels—bearing carboxylic groups to facilitate functionalization. PAA nanogels were conjugated with an engineered bombesin-derivative—oligopeptide combined with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate chelating moiety, aimed to provide selective radioligand transport. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium (DMTMM) toluene-4-sulfonate was used as the coupling agent. After tests on a model amine—p-toluidine—both commercial and home-synthesized DOTA-bombesin were successfully coupled to the nanogels and the obtained products were characterized. The radiolabeling efficiency of nanocarriers with 177Lu, was chromatographically tested. The results provide a proof of concept for the synthesis of radiation-synthesized nanogel-based radioisotope nanocarriers for theranostic applications.
Collapse
|
9
|
Frączyk J, Magdziarz S, Stodolak-Zych E, Dzierzkowska E, Puchowicz D, Kamińska I, Giełdowska M, Boguń M. Chemical Modification as a Method of Improving Biocompatibility of Carbon Nonwovens. MATERIALS 2021; 14:ma14123198. [PMID: 34200740 PMCID: PMC8230386 DOI: 10.3390/ma14123198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022]
Abstract
It was shown that carbon nonwoven fabrics obtained from polyacrylonitrile fibers (PAN) by thermal conversion may be modified on the surface in order to improve their biological compatibility and cellular response, which is particularly important in the regeneration of bone or cartilage tissue. Surface functionalization of carbon nonwovens containing C–C double bonds was carried out using in situ generated diazonium salts derived from aromatic amines containing both electron-acceptor and electron-donor substituents. It was shown that the modification method characteristic for materials containing aromatic structures may be successfully applied to the functionalization of carbon materials. The effectiveness of the surface modification of carbon nonwoven fabrics was confirmed by the FTIR method using an ATR device. The proposed approach allows the incorporation of various functional groups on the nonwovens’ surface, which affects the morphology of fibers as well as their physicochemical properties (wettability). The introduction of a carboxyl group on the surface of nonwoven fabrics, in a reaction with 4-aminobenzoic acid, became a starting point for further modifications necessary for the attachment of RGD-type peptides facilitating cell adhesion to the surface of materials. The surface modification reduced the wettability (θ) of the carbon nonwoven by about 50%. The surface free energy (SFE) in the chemically modified and reference nonwovens remained similar, with the surface modification causing an increase in the polar component (ɣp). The modification of the fiber surface was heterogeneous in nature; however, it provided an attractive site of cell–materials interaction by contacting them to the fiber surface, which supports the adhesion process.
Collapse
Affiliation(s)
- Justyna Frączyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
- Correspondence: (J.F.); (M.B.)
| | - Sylwia Magdziarz
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Ewa Stodolak-Zych
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH-UST University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland; (E.S.-Z.); (E.D.)
| | - Ewa Dzierzkowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH-UST University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland; (E.S.-Z.); (E.D.)
| | - Dorota Puchowicz
- Łukasiewicz Research Network-Textile Research Institute, Brzezińska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.G.)
| | - Irena Kamińska
- Łukasiewicz Research Network-Textile Research Institute, Brzezińska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.G.)
| | - Małgorzata Giełdowska
- Łukasiewicz Research Network-Textile Research Institute, Brzezińska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.G.)
| | - Maciej Boguń
- Łukasiewicz Research Network-Textile Research Institute, Brzezińska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.G.)
- Correspondence: (J.F.); (M.B.)
| |
Collapse
|
10
|
Janczewski Ł, Kręgiel D, Kolesińska B. Synthesis of Isothiocyanates Using DMT/NMM/TsO - as a New Desulfurization Reagent. Molecules 2021; 26:2740. [PMID: 34066597 PMCID: PMC8125326 DOI: 10.3390/molecules26092740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
Thirty-three alkyl and aryl isothiocyanates, as well as isothiocyanate derivatives from esters of coded amino acids and from esters of unnatural amino acids (6-aminocaproic, 4-(aminomethyl)benzoic, and tranexamic acids), were synthesized with satisfactory or very good yields (25-97%). Synthesis was performed in a "one-pot", two-step procedure, in the presence of organic base (Et3N, DBU or NMM), and carbon disulfide via dithiocarbamates, with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate (DMT/NMM/TsO-) as a desulfurization reagent. For the synthesis of aliphatic and aromatic isothiocyanates, reactions were carried out in a microwave reactor, and selected alkyl isothiocyanates were also synthesized in aqueous medium with high yields (72-96%). Isothiocyanate derivatives of L- and D-amino acid methyl esters were synthesized, under conditions without microwave radiation assistance, with low racemization (er 99 > 1), and their absolute configuration was confirmed by circular dichroism. Isothiocyanate derivatives of natural and unnatural amino acids were evaluated for antibacterial activity on E. coli and S. aureus bacterial strains, where the most active was ITC 9e.
Collapse
Affiliation(s)
- Łukasz Janczewski
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland;
| | - Beata Kolesińska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| |
Collapse
|
11
|
Abstract
Abstract
In this work, we present a novel method for the synthesis of ester and amide derivatives containing furan rings (furfural derivatives) under mild synthetic conditions supported by microwave radiation. N-(Furan-2-ylmethyl)furan-2-carboxamide and furan-2-ylmethyl furan-2-carboxylate were produced using 2-furoic acid, furfurylamine, and furfuryl alcohol. The reactions were carried out in a microwave reactor in the presence of effective coupling reagents: DMT/NMM/TsO− or EDC. The reaction time, the solvent, and the amounts of the substrates were optimized. After crystallization or flash chromatography, the final compounds were isolated with good or very good yields. Our method allows for the synthesis of N-blocked amides using N-blocked amino acids (Boc, Cbz, Fmoc) and amine. As well as compounds with a monoamide and ester moiety, products with diamides and diester bonds (N,N-bis(furan-2-ylmethyl)furan-2,5-dicarboxamide, bis(furan-2-ylmethyl) furan-2,5-dicarboxylate, and furan-3,4-diylbis(methylene) bis(furan-2-carboxylate)) were synthesized with moderate yields in the presence of DMT/NMM/TsO– or EDC, using 2,5-furandicarboxylic acid and 3,4-bis(hydroxymethyl)furan as substrates.
Collapse
|
12
|
Abstract
Carbon-based nanomaterials (CBN) are currently used in many biomedical applications. The research includes optimization of single grain size and conglomerates of pure detonated nanodiamond (DND), modified nanodiamond particles and graphene oxide (GO) in order to compare their bactericidal activity against food pathogens. Measurement of grain size and zeta potential was performed using the Dynamic Light Scattering (DLS) method. Surface morphology was evaluated using a Scanning Electron Microscope (SEM) and confocal microscope. X-ray diffraction (XRD) was performed in order to confirm the crystallographic structure of detonation nanodiamond particles. Bacteriostatic tests were performed by evaluating the inhibition zone of pathogens in the presence of carbon based nanomaterials. Raman spectroscopy showed differences between the content of the diamond and graphite phases in diamond nanoparticles. Fluorescence microscopy and adenosine-5′-triphosphate (ATP) determination methods were used to assess the bactericidal of bioactive polymers obtained by modification of food wrapping film using various carbon-based nanomaterials. The results indicate differences in the sizes of individual grains and conglomerates of carbon nanomaterials within the same carbon allotropes depending on surface modification. The bactericidal properties depend on the allotropic form of carbon and the type of surface modification. Depending on the grain size of carbon-based materials, surface modification, the content of the diamond and graphite phases, surface of carbon-based nanomaterials film formation shows more or less intense bactericidal properties and differentiated adhesion of bacterial biofilms to food films modified with carbon nanostructures.
Collapse
|
13
|
Rozniakowski K, Galecki K, Wietrzyk J, Filip-Psurska B, Fraczyk J, Kaminski ZJ, Kolesinska B. N-Methylated Analogs of hIAPP Fragments 18-22, 23-27, 33-37 Inhibit Aggregation of the Amyloidogenic Core of the Hormone. Chem Biodivers 2020; 18:e2000842. [PMID: 33331666 DOI: 10.1002/cbdv.202000842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/20/2020] [Indexed: 11/11/2022]
Abstract
Amylin (hIAPP) aggregation leads to the formation of insoluble deposits and is one of the factors in the development of type II diabetes. The aim of this research was to find N-methylated analogs of the aggregating amylin fragments 18-22, 23-27, and 33-37, which would not themselves be susceptible to aggregation and would inhibit the aggregation of the amyloidogenic cores of the hormone. None of the analogs of fragment 18-22 containing one or two N-methylated amino acid residues showed any tendency to aggregate. Only the peptide H-F(N-Me)GA(N-Me) IL-OH (6) derived from the 23-27 hIAPP hot spot did not form fibrous structures. All analogs of the 33-37 amylin fragment were characterized by the ability to form aggregates, despite the presence of N-methylated amino acids in their structures. N-Methylated peptides 1-5 demonstrated inhibitory properties against the aggregation of fragment 18-22. Aggregation of the amyloidogenic core of 23-27 was significantly inhibited by N-methylated peptides 1-3 derived from the (18-22) H-HSSNN-OH fragment and by the H-F(N-Me)GA(N-Me)IL-OH (6) fragment derived from the 23-27 amylin hot spot. Fragment (33-37) H-GSNTY-NH2 was found to be inhibited in the presence of N-methylated peptides 1-3 derived from the 18-22 fragment and by the double methylated peptide H-F(N-Me)GA(N-Me)IL-OH (6). Research on the possibility of using N-methylated analogs of amyloidogenic amylin cores as inhibitors of hormone aggregation is ongoing, with a focus on finding the minimum concentration of N-methylated peptides capable of inhibiting the aggregation of hIAPP hot spots.
Collapse
Affiliation(s)
- Kamil Rozniakowski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Krystian Galecki
- Institute of General Food Chemistry, Faculty of Biotechnology & Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolfa Weigla St., 53-114, Wroclaw, Poland
| | - Beata Filip-Psurska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolfa Weigla St., 53-114, Wroclaw, Poland
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| |
Collapse
|
14
|
Human Serum Albumin Binds Native Insulin and Aggregable Insulin Fragments and Inhibits Their Aggregation. Biomolecules 2020; 10:biom10101366. [PMID: 32992893 PMCID: PMC7601681 DOI: 10.3390/biom10101366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 01/04/2023] Open
Abstract
The purpose of this study was to investigate whether Human Serum Albumin (HSA) can bind native human insulin and its A13–A19 and B12–B17 fragments, which are responsible for the aggregation of the whole hormone. To label the hormone and both hot spots, so that their binding positions within the HSA could be identified, 4-(1-pyrenyl)butyric acid was used as a fluorophore. Triazine coupling reagent was used to attach the 4-(1-pyrenyl)butyric acid to the N-terminus of the peptides. When attached to the peptides, the fluorophore showed extended fluorescence lifetimes in the excited state in the presence of HSA, compared to the samples in buffer solution. We also analyzed the interactions of unlabeled native insulin and its hot spots with HSA, using circular dichroism (CD), the microscale thermophoresis technique (MST), and three independent methods recommended for aggregating peptides. The CD spectra indicated increased amounts of the α-helical secondary structure in all analyzed samples after incubation. Moreover, for each of the two unlabeled hot spots, it was possible to determine the dissociation constant in the presence of HSA, as 14.4 µM (A13–A19) and 246 nM (B12–B17). Congo Red, Thioflavin T, and microscopy assays revealed significant differences between typical amyloids formed by the native hormone or its hot-spots and the secondary structures formed by the complexes of HSA with insulin and A13–A19 and B12–B17 fragments. All results show that the tested peptide-probe conjugates and their unlabeled analogues interact with HSA, which inhibits their aggregation.
Collapse
|
15
|
Design, Synthesis and Functional Analysis of Cyclic Opioid Peptides with Dmt-Tic Pharmacophore. Molecules 2020; 25:molecules25184260. [PMID: 32957550 PMCID: PMC7570497 DOI: 10.3390/molecules25184260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Abstract
The opioid receptors are members of the G-protein-coupled receptor (GPCR) family and are known to modulate a variety of biological functions, including pain perception. Despite considerable advances, the mechanisms by which opioid agonists and antagonists interact with their receptors and exert their effect are still not completely understood. In this report, six new hybrids of the Dmt-Tic pharmacophore and cyclic peptides, which were shown before to have a high affinity for the µ-opioid receptor (MOR) were synthesized and characterized pharmacologically in calcium mobilization functional assays. All obtained ligands turned out to be selective antagonists of the δ-opioid receptor (DOR) and did not activate or block the MOR. The three-dimensional structural determinants responsible for the DOR antagonist properties of these analogs were further investigated by docking studies. The results indicate that these compounds attach to the DOR in a slightly different orientation with respect to the Dmt-Tic pharmacophore than Dmt-TicΨ[CH2-NH]Phe-Phe-NH2 (DIPP-NH2[Ψ]), a prototypical DOR antagonist peptide. Key pharmacophoric contacts between the DOR and the ligands were maintained through an analogous spatial arrangement of pharmacophores, which could provide an explanation for the predicted high-affinity binding and the experimentally observed functional properties of the novel synthetic ligands.
Collapse
|
16
|
Rozniakowski K, Fraczyk A, Galecki K, Wietrzyk J, Filip-Psurska B, Fraczyk J, Kaminski ZJ, Kolesinska B. New Human Islet Amyloid Polypeptide Fragments Susceptible to Aggregation. Chem Biodivers 2020; 17:e2000501. [PMID: 32876375 DOI: 10.1002/cbdv.202000501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
Human Islet Amyloid Polypeptide (hIAPP) plays a key role in the pathogenesis of type II diabetes. The aim of this research was to search for new amyloidogenic fragments of hIAPP. An initial attempt to predict the amyloidogenic cores of polypeptides/proteins using five different computer programs did not provide conclusive results. Therefore, we synthesized hIAPP fragments covering the entire hormone. The fragments were assessed for their aggregation ability, using recommended methods to search for the amyloidogenic fragments of the polypeptides/proteins. It was found that fragments (18-22) H-HSSNN-OH and (33-37) H-GSNTY-NH2 aggregate and form stable amyloid-like structures. Both of these fragments have a much higher antiproliferative activity relative to the RIN-5F cell compared to the (23-27) H-FGAIL-OH fragment widely regarded as the amyloidogenic core of amylin. The analog of (33-37) H-GSNTY-NH2 containing a free carboxy group on the C-terminal amino acid (H-GSNTY-OH) does not have amyloidogenic properties and can therefore be considered as a potential inhibitor of amylin aggregation. Research on the use of non-aggregating amylin fragments as potential hormone aggregation inhibitors is ongoing.
Collapse
Affiliation(s)
- Kamil Rozniakowski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
| | - Andrzej Fraczyk
- Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego Łódź, 18/22, Lodz, 90-537, Poland
| | - Krystian Galecki
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz, 90-924, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolfa Weigla St., 53-114, Wroclaw, Poland
| | - Beata Filip-Psurska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolfa Weigla St., 53-114, Wroclaw, Poland
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
| |
Collapse
|
17
|
Conjugates of Chitosan and Calcium Alginate with Oligoproline and Oligohydroxyproline Derivatives for Potential Use in Regenerative Medicine. MATERIALS 2020; 13:ma13143079. [PMID: 32664253 PMCID: PMC7412561 DOI: 10.3390/ma13143079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/27/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022]
Abstract
New materials that are as similar as possible in terms of structure and biology to the extracellular matrix (external environment) of cells are of great interest for regenerative medicine. Oligoproline and oligohydroxyproline derivatives (peptides 2-5) are potential mimetics of collagen fragments. Peptides 2-5 have been shown to be similar to the model collagen fragment (H-Gly-Hyp-Pro-Ala-Hyp-Pro-OH, 1) in terms of both their spatial structure and biological activity. In this study, peptides 2-5 were covalently bound to nonwovens based on chitosan and calcium alginate. Incorporation of the peptides was confirmed by Fourier transform -infrared (FT-IR) and zeta potential measurements. Biological studies (cell metabolic activity by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and Live/Dead assay) proved that the obtained peptide-polysaccharide conjugates were not toxic to the endothelial cell line EA.hy 926. In many cases, the conjugates had a highly affirmative influence on cell proliferation. The results of this study show that conjugates of chitosan and calcium alginate with oligoproline and oligohydroxyproline derivatives have potential for use in regenerative medicine.
Collapse
|
18
|
Stodolak-Zych E, Jeleń P, Dzierzkowska E, Krok-Borkowicz M, Zych Ł, Boguń M, Rapacz-Kmita A, Kolesińska B. Modification of chitosan fibers with short peptides as a model of synthetic extracellular matrix. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Fraczyk J, Wasko J, Walczak M, Kaminski ZJ, Puchowicz D, Kaminska I, Bogun M, Kolasa M, Stodolak-Zych E, Scislowska-Czarnecka A, Kolesinska B. Conjugates of Copper Alginate with Arginine-Glycine-Aspartic Acid (RGD) for Potential Use in Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E337. [PMID: 31940765 PMCID: PMC7013949 DOI: 10.3390/ma13020337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/02/2023]
Abstract
Current restrictions on the use of antibiotics, associated with increases in bacterial resistance, require new solutions, including materials with antibacterial properties. In this study, copper alginate fibers obtained using the classic wet method were used to make nonwovens which were modified with arginine-glycine-aspartic acid (RGD) derivatives. Stable polysaccharide-peptide conjugates formed by coupling with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate (DMT/NMM/TosO-), and materials with physically embedded RGD derivatives, were obtained. The materials were found to be characterized by very high antibacterial activity against S. aureus and K. pneumoniae. Cytotoxicity studies confirmed that the materials are not cytotoxic. Copper alginate conjugates with RGD peptides have strong potential for use in regenerative medicine, due to their biocompatibility and innate antibacterial activity.
Collapse
Affiliation(s)
- Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| | - Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| | - Malgorzata Walczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| | - Zbigniew J. Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| | - Dorota Puchowicz
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.B.)
| | - Irena Kaminska
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.B.)
| | - Maciej Bogun
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.B.)
| | - Marcin Kolasa
- Military Institute of Hygiene and Epidemiology Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland;
| | - Ewa Stodolak-Zych
- Department of Biomaterials, AGH‐University of Science and Technology, A. Mickiewicz 30, 30-059 Krakow, Poland;
| | - Anna Scislowska-Czarnecka
- Academy of Physical Education, Department of Physiotherapy, Section of Anatomy, 31-008 Krakow, Poland;
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‐924 Lodz, Poland; (J.F.); (J.W.); (M.W.); (Z.J.K.)
| |
Collapse
|
20
|
Lipinski W, Wasko J, Walczak M, Fraczyk J, Kaminski ZJ, Galecki K, Draczynski Z, Krucinska I, Kaminska M, Kolesinska B. Fibrous Aggregates of Short Peptides Containing Two Distinct Aromatic Amino Acid Residues. Chem Biodivers 2019; 16:e1900339. [PMID: 31557397 DOI: 10.1002/cbdv.201900339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
Abstract
The aim of the study was the assessment of the ability of short peptides to form aggregates under physiological conditions. The dipeptides studied were derived from different aromatic amino acids (heteroaromatic peptides). Tripeptides were obtained from two distinct aromatic amino acids and cysteine or methionine residue in the C-terminal, N-terminal, or central position. The ability of the peptides to form fibrous aggregates under physiological conditions was evaluated using three independent methods: the Congo Red assay, the Thioflavin T assay, and microscopic examinations using normal and polarized light. Materials potentially useful for regenerative medicine were selected based on their cytotoxicity to the endothelial cell line EA.hy 926 and physicochemical properties of films formed by peptides. The required parameters of biocompatibility were fulfilled by H-PheCysTrp-OH, H-PheCysTyr-OH, H-PheTyrMet-OH, and H-TrpTyr-OH.
Collapse
Affiliation(s)
- Wojciech Lipinski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Malgorzata Walczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Krystian Galecki
- Institute of General Food Chemistry, Faculty of Biotechnology & Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Zbigniew Draczynski
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Izabella Krucinska
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Marta Kaminska
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924, Lodz, Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| |
Collapse
|
21
|
Swiontek M, Wasko J, Fraczyk J, Galecki K, Kaminski ZJ, Kolesinska B. Insulin Hot-Spot Analogs Formed with N-Methylated Amino Acid Residues Inhibit Aggregation of Native Hormone. Molecules 2019; 24:molecules24203706. [PMID: 31618999 PMCID: PMC6832904 DOI: 10.3390/molecules24203706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 11/27/2022] Open
Abstract
In this study, N-methylated analogs of hot-spots of insulin were designed and synthesized, in the expectation that they would inhibit the aggregation of both insulin hot-spots and the entire hormone. Synthesis of insulin “amyloidogenic” analogs containing N-methylated amino acid residues was performed by microwave-assisted solid phase according to the Fmoc/tert-Bu strategy. As a coupling reagent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate (DMT/NMM/TosO-) was used. Three independent methods were applied in aggregation studies of the complexes of insulin with its N-methylated peptides. Additionally, circular dichroism (CD) measurements were used to confirm that aggregation processes did not occur in the presence of the N-methylated analogs of hot-spot insulin fragments, and that insulin retains its native conformation. Of the seven N-methylated analogs of the A- and B-chain hot-spots of insulin, six inhibited insulin aggregation (peptides 1 and 3–7). All tested peptides were found to have a lower ability to inhibit the aggregation of insulin hot-spots compared to the capability to inhibit native hormone aggregation.
Collapse
Affiliation(s)
- Monika Swiontek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Krystian Galecki
- Institute of General Food Chemistry, Faculty of Biotechnology & Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
22
|
Wróbel A, Kolesińska B, Frączyk J, Kamiński ZJ, Tankiewicz-Kwedlo A, Hermanowicz J, Czarnomysy R, Maliszewski D, Drozdowska D. Synthesis and cellular effects of novel 1,3,5-triazine derivatives in DLD and Ht-29 human colon cancer cell lines. Invest New Drugs 2019; 38:990-1002. [PMID: 31520321 PMCID: PMC7340680 DOI: 10.1007/s10637-019-00838-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022]
Abstract
This study provides new information on the cellular effects of 1,3,5-triazine nitrogen mustards with different peptide groups in DLD and Ht-29 human colon cancer cell lines. A novel series of 2,4,6-trisubstituted 1,3,5-triazine derivatives bearing 2-chloroethyl and oligopeptide moieties was designed and synthesized. The most cytotoxic derivative was triazine with an Ala-Ala-OMe substituent on the ring (compound 7b). This compound induced time- and dose-dependent cytotoxicity in the DLD-1 and HT-29 colon cancer cell lines. The triazine derivative furthermore induced apoptosis through intracellular signaling pathway attenuation. Compound 7b may be a candidate for further evaluation as a chemotherapeutic agent against colorectal cancer.
Collapse
Affiliation(s)
- Agnieszka Wróbel
- Department of Organic Chemistry, Medical University of Bialystok, Białystok, Poland
| | - Beata Kolesińska
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Justyna Frączyk
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | | | - Anna Tankiewicz-Kwedlo
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Białystok, Poland
| | - Justyna Hermanowicz
- Department of Clinical Pharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Dawid Maliszewski
- Department of Organic Chemistry, Medical University of Bialystok, Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Bialystok, Białystok, Poland.
| |
Collapse
|
23
|
Swiontek M, Fraczyk J, Wasko J, Chaberska A, Pietrzak L, Kaminski ZJ, Szymanski L, Wiak S, Kolesinska B. Search for New Aggregable Fragments of Human Insulin. Molecules 2019; 24:molecules24081600. [PMID: 31018524 PMCID: PMC6514721 DOI: 10.3390/molecules24081600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, three independent methods were used to identify short fragment of both chains of human insulin which are prone for aggregation. In addition, circular dichroism (CD) research was conducted to understand the progress of aggregation over time. The insulin fragments (deca- and pepta-peptides) were obtained by solid-phase synthesis using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate (DMT/NMM/TosO-) as a coupling reagent. Systematic studies allowed identification of the new fragments, expected to be engaged in triggering aggregation of the entire structure of human insulin under physiological conditions. It was found that the aggregation process occurs through various structural conformers and may favor the formation of a fibrous structure of aggregate.
Collapse
Affiliation(s)
- Monika Swiontek
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Joanna Wasko
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Agata Chaberska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Lukasz Pietrzak
- Institute of Mechatronics and Information Systems, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland.
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Lukasz Szymanski
- Institute of Mechatronics and Information Systems, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland.
| | - Slawomir Wiak
- Institute of Mechatronics and Information Systems, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland.
| | - Beata Kolesinska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
24
|
Chaberska A, Fraczyk J, Wasko J, Rosiak P, Kaminski ZJ, Solecka A, Stodolak‐Zych E, Strzempek W, Menaszek E, Dudek M, Niemiec W, Kolesinska B. Study on the Materials Formed by Self‐Assembling Hydrophobic, Aromatic Peptides Dedicated to Be Used for Regenerative Medicine. Chem Biodivers 2019; 16:e1800543. [PMID: 30556377 DOI: 10.1002/cbdv.201800543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/13/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Agata Chaberska
- Institute of Organic ChemistryLodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Justyna Fraczyk
- Institute of Organic ChemistryLodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Joanna Wasko
- Institute of Organic ChemistryLodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Piotr Rosiak
- Institute of Organic ChemistryLodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Zbigniew J. Kaminski
- Institute of Organic ChemistryLodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Agnieszka Solecka
- AGH – University of Science and TechnologyDepartment of Biomaterials A. Mickiewicz 30 30-059 Krakow Poland
| | - Ewa Stodolak‐Zych
- AGH – University of Science and TechnologyDepartment of Biomaterials A. Mickiewicz 30 30-059 Krakow Poland
| | - Weronika Strzempek
- Department of Cytology, CMUJJagiellonian University Medical College Swietej Anny 12 31-008 Krakow Poland
| | - Elzbieta Menaszek
- Department of Cytology, CMUJJagiellonian University Medical College Swietej Anny 12 31-008 Krakow Poland
| | - Mariusz Dudek
- Institute of Materials Science and EngineeringLodz University of Technology Stefanowskiego 1/15 90-924 Lodz Poland
| | - Wiktor Niemiec
- AGH – University of Science and TechnologyDepartment of Silicate Chemistry and Macromolecular Compounds Department of Silicates Chemistry A. Mickiewicza 30 30-059 Krakow Poland
| | - Beata Kolesinska
- Institute of Organic ChemistryLodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| |
Collapse
|
25
|
Fraczyk J, Kamiński ZJ. N-Lipidated Amino Acids and Peptides Immobilizedon Cellulose Able to Split Amide Bonds. MATERIALS 2019; 12:ma12040578. [PMID: 30769907 PMCID: PMC6416662 DOI: 10.3390/ma12040578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/02/2022]
Abstract
N-lipidated short peptides and amino acids immobilized on the cellulose were used as catalysts cleaved amide bonds under biomimetic conditions. In order to select catalytically most active derivatives a library of 156 N-lipidated amino acids, dipeptides and tripeptides immobilized on cellulose was obtained. The library was synthesized from serine, histidine and glutamic acid peptides N-acylated with heptanoic, octanoic, hexadecanoic and (E)-octadec-9-enoic acids. Catalytic efficiency was monitored by spectrophotometric determination of p-nitroaniline formed by the hydrolysis of a 0.1 M solution of Z-Leu-NP. The most active 8 structures contained tripeptide fragment with 1-3 serine residues. It has been found that incorporation of metal ions into catalytic pockets increase the activity of the synzymes. The structures of the 17 most active catalysts selected from the library of complexes obtained with Cu2+ ion varied from 16 derivatives complexed with Zn2+ ion. For all of them, a very high reaction rate during the preliminary phase of measurements was followed by a substantial slowdown after 1 h. The catalytic activity gradually diminished after subsequent re-use. HPLC analysis of amide bond splitting confirmed that substrate consumption proceeded in two stages. In the preliminary stage 24–40% of the substrate was rapidly hydrolysed followed by the substantially lower reaction rate. Nevertheless, using the most competent synzymes product of hydrolysis was formed with a yield of 60–83% after 48h under mild and strictly biomimetic conditions.
Collapse
Affiliation(s)
- Justyna Fraczyk
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Zbigniew J Kamiński
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
26
|
Jaszczak M, Kolesińska B, Wach R, Maras P, Dudek M, Kozicki M. Examination of THPC as an oxygen scavenger impacting VIC dosimeter thermal stability and comparison of NVP-containing polymer gel dosimeters. ACTA ACUST UNITED AC 2019; 64:035019. [DOI: 10.1088/1361-6560/aafa86] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Orthogonal Functionalization of Nanodiamond Particles after Laser Modification and Treatment with Aromatic Amine Derivatives. NANOMATERIALS 2018; 8:nano8110908. [PMID: 30400638 PMCID: PMC6266277 DOI: 10.3390/nano8110908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 11/16/2022]
Abstract
A laser system with a wavelength of 1064 nm was used to generate sp² carbon on the surfaces of nanodiamond particles (NDPs). The modified by microplasma NDPs were analysed using FT-IR and Raman spectroscopy. Raman spectra confirmed that graphitization had occurred on the surfaces of the NDPs. The extent of graphitization depended on the average power used in the laser treatment process. FT-IR analysis revealed that the presence of C=C bonds in all spectra of the laser-modified powder. The characteristic peaks for olefinic bonds were much more intense than in the case of untreated powder and grew in intensity as the average laser power increased. The olefinized nanodiamond powder was further functionalized using aromatic amines via in situ generated diazonium salts. It was also found that isokinetic mixtures of structurally diverse aromatic amines containing different functional groups (acid, amine) could be used to functionalize the surfaces of the laser-modified nanoparticles leading to an amphiphilic carbon nanomaterial. This enables one-step orthogonal functionalization and opens the possibility of selectively incorporating molecules with diverse biological activities on the surfaces of NDPs. Modified NDPs with amphiphilic properties resulting from the presence carboxyl and amine groups were used to incorporate simultaneously folic acid (FA-CONH-(CH₂)₅-COOH) and 5(6)-carboxyfluorescein (FL-CONH-(CH₂)₂-NH₂) derivatives on the surface of material under biocompatible procedures.
Collapse
|
28
|
Towards Intelligent Drug Design System: Application of Artificial Dipeptide Receptor Library in QSAR-Oriented Studies. Molecules 2018; 23:molecules23081964. [PMID: 30082652 PMCID: PMC6222794 DOI: 10.3390/molecules23081964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/29/2018] [Accepted: 08/05/2018] [Indexed: 12/23/2022] Open
Abstract
The pharmacophore properties of a new series of potential purinoreceptor (P2X) inhibitors determined using a coupled neural network and the partial least squares method with iterative variable elimination (IVE-PLS) are presented in a ligand-based comparative study of the molecular surface by comparative molecular surface analysis (CoMSA). Moreover, we focused on the interpretation of noticeable variations in the potential selectiveness of interactions of individual inhibitor-receptors due to their physicochemical properties; therefore, the library of artificial dipeptide receptors (ADP) was designed and examined. The resulting library response to individual inhibitors was arranged in the array, preprocessed and transformed by the principal component analysis (PCA) and PLS procedures. A dominant absolute contribution to PC1 of the Glu attached to heptanoic gating acid and Phe bonded to the linker m-phenylenediamine/triazine scaffold was revealed by the PCA. The IVE-PLS procedure indicated the receptor systems with predominant Pro bonded to the linker and Glu, Gln, Cys and Val directly attached to the gating acid. The proposed comprehensive ligand-based and simplified structure-based methodology allows the in-depth study of the performance of peptide receptors against the tested set of compounds.
Collapse
|
29
|
Fraczyk J, Lipinski W, Chaberska A, Wasko J, Rozniakowski K, Kaminski ZJ, Bogun M, Draczynski Z, Menaszek E, Stodolak-Zych E, Kaminska M, Kolesinska B. Search for Fibrous Aggregates Potentially Useful in Regenerative Medicine Formed under Physiological Conditions by Self-Assembling Short Peptides Containing Two Identical Aromatic Amino Acid Residues. Molecules 2018; 23:E568. [PMID: 29498711 PMCID: PMC6017032 DOI: 10.3390/molecules23030568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/26/2022] Open
Abstract
This study investigates the propensity of short peptides to self-organize and the influence of aggregates on cell cultures. The dipeptides were derived from both enantiomers of identical aromatic amino acids and tripeptides were prepared from two identical aromatic amino acids with one cysteine or methionine residue in the C-terminal, N-terminal, or central position. The formation or absence of fibrous structures under physiological conditions was established using Congo Red and Thioflavine T assays as well as by microscopic examination using normal and polarized light. The in vitro stability of the aggregates in buffered saline solution was assessed over 30 days. Materials with potential for use in regenerative medicine were selected based on the cytotoxicity of the peptides to the endothelial cell line EA.hy 926 and the wettability of the surfaces of the films, as well as using scanning electron microscopy. The criteria were fulfilled by H-dPhedPhe-OH, H-dCysdPhedPhe-OH, H-CysTyrTyr-OH, H-dPhedPhedCys-OH, H-TyrTyrMet-OH, and H-TyrMetTyr-OH. Our preliminary results suggest that the morphology and cell viability of L919 fibroblast cells do not depend on the stereochemistry of the self-organizing peptides.
Collapse
Affiliation(s)
- Justyna Fraczyk
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Wojciech Lipinski
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Agata Chaberska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Joanna Wasko
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Kamil Rozniakowski
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Maciej Bogun
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Zbigniew Draczynski
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Elzbieta Menaszek
- Department of Cytology, CMUJ-Jagiellonian University Medical College, Swietej Anny 12, 31-008 Krakow, Poland.
| | - Ewa Stodolak-Zych
- AGH-University of Science and Technology, Department of Biomaterials, A. Mickiewicz 30, 30-059 Krakow, Poland.
| | - Marta Kaminska
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland.
| | - Beata Kolesinska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
30
|
Fraczyk J, Walczak M, Kaminski ZJ. New methodology for automated SPOT synthesis of peptides on cellulose using 1,3,5-triazine derivatives as linkers and as coupling reagents. J Pept Sci 2018; 24. [DOI: 10.1002/psc.3063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/02/2017] [Accepted: 11/21/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Justyna Fraczyk
- Institute of Organic Chemistry, Lodz University of Technology; 90-924 Lodz Poland
| | - Małgorzata Walczak
- Institute of Organic Chemistry, Lodz University of Technology; 90-924 Lodz Poland
| | - Zbigniew J. Kaminski
- Institute of Organic Chemistry, Lodz University of Technology; 90-924 Lodz Poland
| |
Collapse
|
31
|
Kolesinska B, Wasko J, Kaminski Z, Geueke B, Kohler HPE, Seebach D. Labeling and Protecting N
-Terminal Protein Positions by β
-Peptidyl Aminopeptidase-Catalyzed Attachment of β
-Amino-Acid Residues - Insulin as a First Example. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beata Kolesinska
- Institute of Organic Chemistry; Technical University of Łodz; Zeromskiego 116 PL-90-924 Łodz Poland
| | - Joanna Wasko
- Institute of Organic Chemistry; Technical University of Łodz; Zeromskiego 116 PL-90-924 Łodz Poland
| | - Zbigniew Kaminski
- Institute of Organic Chemistry; Technical University of Łodz; Zeromskiego 116 PL-90-924 Łodz Poland
| | - Birgit Geueke
- Department of Environmental Microbiology; Eawag, Swiss Federal Institute of Aquatic Science and Technology; Überlandstrasse 133 8600 Dübendorf Switzerland
| | - Hans-Peter E. Kohler
- Department of Environmental Microbiology; Eawag, Swiss Federal Institute of Aquatic Science and Technology; Überlandstrasse 133 8600 Dübendorf Switzerland
| | - Dieter Seebach
- Laboratorium für Organische Chemie; Departement Chemie und Angewandte Biowissenschaften; ETH-Zürich; Hönggerberg HCI, Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| |
Collapse
|
32
|
Fraczyk J, Kaminski ZJ, Katarzynska J, Kolesinska B. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium Toluene-4-sulfonate (DMT/NMM/TsO−
) Universal Coupling Reagent for Synthesis in Solution. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Justyna Fraczyk
- Institute of Organic Chemistry; Lodz University of Technology; 90-924 Lodz Poland
| | - Zbigniew J. Kaminski
- Institute of Organic Chemistry; Lodz University of Technology; 90-924 Lodz Poland
| | - Joanna Katarzynska
- Institute of Organic Chemistry; Lodz University of Technology; 90-924 Lodz Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry; Lodz University of Technology; 90-924 Lodz Poland
| |
Collapse
|
33
|
Fraczyk J, Walczak M, Szymanski L, Kolacinski Z, Wrzosek H, Majsterek I, Przybylowska-Sygut K, Kaminski ZJ. Carbon nanotubes functionalized with folic acid attached via biomimetic peptide linker. Nanomedicine (Lond) 2017; 12:2161-2182. [PMID: 28814127 DOI: 10.2217/nnm-2017-0120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM Anchoring folic acid (FA) with a biomimetic peptidic linker resistant to proteolytic degradation to act as a homing device on functionalized carbon nanotubes. MATERIALS & METHODS Ethylenediamine was attached to oxidized multiwalled carbon nanotubes (MWNTs) using 4-(4,6-dimethoxy-[1,3,5]triazin-2-yl)-4-methylmorpholinium tetrafluoroborate. FA was coupled with 6-aminohexanoic acid and derivatives of β-alanine, affording four intermediates, which connected to the MWNTs via peptidic linkers of various lengths. RESULTS Biomimetic nanomaterials were produced with FA as a homing molecule. The structure and properties of the nanomaterials were analyzed, confirming the versatility of the peptides used as linkers. CONCLUSION Conjugates of FA attached to MWNTs via peptide linkers prepared from β-alanine residues are resistant to proteolytic degradation. Viability in colon cancer cells and normal colonocytes confirmed their lack of cytotoxicity.
Collapse
Affiliation(s)
- Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90924 Lodz, Poland
| | - Malgorzata Walczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90924 Lodz, Poland
| | - Lukasz Szymanski
- Institute of Mechatronics & Information Systems, Lodz University of Technology, Stefanowskiego 18/22, 90924 Lodz, Poland
| | - Zbigniew Kolacinski
- Institute of Mechatronics & Information Systems, Lodz University of Technology, Stefanowskiego 18/22, 90924 Lodz, Poland
| | - Henryk Wrzosek
- Department of Material & Commodity Sciences & Textile Metrology, Lodz University of Technology, Zeromskiego 116, 90924 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry & Biochemistry, Medical University of Lodz, Plac Hallera 1, 90647 Lodz, Poland
| | - Karolina Przybylowska-Sygut
- Department of Clinical Chemistry & Biochemistry, Medical University of Lodz, Plac Hallera 1, 90647 Lodz, Poland
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90924 Lodz, Poland
| |
Collapse
|
34
|
Swiontek M, Rozniakowski K, Fraczyk J, Lipinski W, Galecki K, Wysocki S, R Dupont BG, Kaminski ZJ, Kolesinska B. The quest for the shortest fragments of A (13-19) and B (12-17) responsible for the aggregation of human insulin. Nanomedicine (Lond) 2016; 11:2083-101. [PMID: 27463367 DOI: 10.2217/nnm-2016-0100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To identify the shortest components of A13-A19, B12-B17 fragments capable for fibrillation and to validate the dependability of aggregation on the presence of hydroxyl group engaged in the 'tyrosine kissing'. MATERIALS & METHODS Fragments A13-A19 and B12-B17 of insulin and all shortened analogues were obtained by using DMT/NMM/TosO(-) as a coupling reagent. The aggregation was studied by three independent tests. RESULTS Studies on the susceptibility to aggregation of truncated analogs of insulin amyloidogenic core show three groups of peptides. CONCLUSION Truncation of A13-A419 fragment shows that fibrous structures are formed by all peptides bearing (13)H-LeuTyr-OH(14). Propensity to aggregation was found for (16)H-TyrLeu-OH(17) B12-B17 fragment. Tyrosine residue modification by incorporation of tert-butyl group on hydroxyl function gave analogues still predisposed to aggregation.
Collapse
Affiliation(s)
- Monika Swiontek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Kamil Rozniakowski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Wojciech Lipinski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Krystian Galecki
- Institute of General Food Chemistry, Faculty of Biotechnology & Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Stanislaw Wysocki
- Institute of General Food Chemistry, Faculty of Biotechnology & Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Bertrand G R Dupont
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
35
|
Adamska A, Kolesińska B, Kluczyk A, Kamiński ZJ, Janecka A. Synthesis of linear and cyclic opioid-based peptide analogs containing multipleN-methylated amino acid residues. J Pept Sci 2015; 21:807-10. [DOI: 10.1002/psc.2804] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/22/2015] [Accepted: 07/02/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Anna Adamska
- Department of Biomolecular Chemistry; Medical University of Lodz; Poland, Mazowiecka 6/8 92-215 Lodz Poland
| | - Beata Kolesińska
- Institute of Organic Chemistry; Lodz University of Technology; Zeromskiego 116 90-924 Lodz Poland
| | - Alicja Kluczyk
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | - Zbigniew J. Kamiński
- Institute of Organic Chemistry; Lodz University of Technology; Zeromskiego 116 90-924 Lodz Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry; Medical University of Lodz; Poland, Mazowiecka 6/8 92-215 Lodz Poland
| |
Collapse
|