Barthelmes K, Yaginuma K, Matsumoto A. Tuning the Stability and Kinetics of Dioxazaborocanes.
Chemistry 2025;
31:e202402625. [PMID:
39297303 DOI:
10.1002/chem.202402625]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
We investigated the equilibrium reaction of boronic acid (BA), diethanolamines (DEA), and 1,3,6,2-dioxazaborocanes (DOAB) in aqueous solutions, both theoretically and experimentally. Our findings show that the association constant can be adjusted by substituting BA and DEA derivatives, ranging from 100 to 103 M-1, exhibiting a bell-shaped pH dependency. The highest stability was achieved when the pKa values of DEA and BA were closely matched. This approach enabled the preparation of a highly stable DOAB under physiological conditions. Furthermore, the hydrolysis kinetics of DOABs were controllable over a range of five orders of magnitude based on the substituent's steric effect. In the slowest case, this resulted in quasi-static stability with only 1 % cleavage in the first hour, followed by a week-long cleavage period to reach equilibrium. These insights could establish a unique chemistry platform for designing scheduled cleavability on a day-to-week timescale, relevant to protein engineering, immunotherapy, and other smart drug delivery applications.
Collapse