1
|
Novacek A, Ugaz B, Stephanopoulos N. Templating Peptide Chemistry with Nucleic Acids: Toward Artificial Ribosomes, Cell-Specific Therapeutics, and Novel Protein-Mimetic Architectures. Biomacromolecules 2024; 25:3865-3876. [PMID: 38860980 DOI: 10.1021/acs.biomac.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In biology, nanomachines like the ribosome use nucleic acid templates to synthesize polymers in a sequence-specific, programmable fashion. Researchers have long been interested in using the programmable properties of nucleic acids to enhance chemical reactions via colocalization of reagents using complementary nucleic acid handles. In this review, we describe progress in using nucleic acid templates, handles, or splints to enhance the covalent coupling of peptides to other peptides or oligonucleotides. We discuss work in several areas: creating ribosome-mimetic systems, synthesizing bioactive peptides on DNA or RNA templates, linking peptides into longer molecules and bioactive antibody mimics, and scaffolding peptides to build protein-mimetic architectures. We close by highlighting the challenges that must be overcome in nucleic acid-templated peptide chemistry in two areas: making full-length, functional proteins from synthetic peptides and creating novel protein-mimetic architectures not possible through macromolecular folding alone.
Collapse
Affiliation(s)
- Alexandra Novacek
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85251, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe Arizona 85251, United States
| | - Bryan Ugaz
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85251, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe Arizona 85251, United States
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85251, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe Arizona 85251, United States
| |
Collapse
|
2
|
Mangubat-Medina AE, Ball ZT. Triggering biological processes: methods and applications of photocaged peptides and proteins. Chem Soc Rev 2021; 50:10403-10421. [PMID: 34320043 DOI: 10.1039/d0cs01434f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There has been a significant push in recent years to deploy fundamental knowledge and methods of photochemistry toward biological ends. Photoreactive groups have enabled chemists to activate biological function using the concept of photocaging. By granting spatiotemporal control over protein activation, these photocaging methods are fundamental in understanding biological processes. Peptides and proteins are an important group of photocaging targets that present conceptual and technical challenges, requiring precise chemoselectivity in complex polyfunctional environments. This review focuses on recent advances in photocaging techniques and methodologies, as well as their use in living systems. Photocaging methods include genetic and chemical approaches that require a deep understanding of structure-function relationships based on subtle changes in primary structure. Successful implementation of these ideas can shed light on important spatiotemporal aspects of living systems.
Collapse
Affiliation(s)
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
3
|
Mangubat-Medina AE, Trial HO, Vargas RD, Setegne MT, Bader T, Distefano MD, Ball ZT. Red-shifted backbone N–H photocaging agents. Org Biomol Chem 2020; 18:5110-5114. [DOI: 10.1039/d0ob00923g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 3-nitrodibenzofuran cure provides blue-shifted reactivity in vinylogous photocleavage processes.
Collapse
Affiliation(s)
| | | | | | | | - Taysir Bader
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | | | | |
Collapse
|
4
|
Yin H, Lu D, Wang S, Wang P. Development of Powerful Auxiliary-Mediated Ligation To Facilitate Rapid Protein Assembly. Org Lett 2019; 21:5138-5142. [PMID: 31247759 DOI: 10.1021/acs.orglett.9b01737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here, we describe an Se-auxiliary mediated ligation protocol capable of rapid native chemical ligations at sterically hindered junctions, followed by in situ auxiliary cleavage under neutral conditions without affecting unprotected Cys residues. This auxiliary, which is prepared from phenyl acetaldehyde in one step, can be conveniently attached to the N-terminal region of a peptide via a reductive amination or coupling reaction. We demonstrated this methodology by synthesizing two protein samples.
Collapse
Affiliation(s)
- Hongli Yin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Dan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| |
Collapse
|
5
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
6
|
So WH, Wong CT, Xia J. Peptide photocaging: A brief account of the chemistry and biological applications. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Loibl SF, Dallmann A, Hennig K, Juds C, Seitz O. Features of Auxiliaries That Enable Native Chemical Ligation beyond Glycine and Cleavage via Radical Fragmentation. Chemistry 2018; 24:3623-3633. [PMID: 29334413 DOI: 10.1002/chem.201705927] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 12/26/2022]
Abstract
Native chemical ligation (NCL) is an invaluable tool in the total chemical synthesis of proteins. Ligation auxiliaries overcome the requirement for cysteine. However, the reported auxiliaries remained limited to glycine-containing ligation sites and the acidic conditions applied for cleavage of the typically applied N-benzyl-type linkages promote side reactions. With the aim to improve upon both ligation and cleavage, we systematically investigated alternative ligation scaffolds that challenge the N-benzyl dogma. The study revealed that auxiliary-mediated peptide couplings are fastest when the ligation proceeds via 5-membered rather than 6-membered rings. Substituents in α-position of the amine shall be avoided. We observed, perhaps surprisingly, that additional β-substituents accelerated the ligation conferred by the β-mercaptoethyl scaffold. We also describe a potentially general means to remove ligation auxiliaries by treatment with an aqueous solution of triscarboxyethylphosphine (TCEP) and morpholine at pH 8.5. NMR analysis of a 13 C-labeled auxiliary showed that cleavage most likely proceeds through a radical-triggered oxidative fragmentation. High ligation rates provided by β-substituted 2-mercaptoethyl scaffolds, their facile introduction as well as the mildness of the cleavage reaction are attractive features for protein synthesis beyond cysteine and glycine ligation sites.
Collapse
Affiliation(s)
- Simon F Loibl
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Andre Dallmann
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Kathleen Hennig
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Carmen Juds
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
8
|
Abstract
Heavy isotope labeling of enzymes slows protein motions without disturbing the electrostatics and can therefore be used to probe the role of dynamics in enzyme catalysis. To identify the structural elements responsible for dynamic effects, individual segments of an enzyme can be labeled and the resulting effect on the kinetics of the reaction can be measured. Such hybrid isotopomers can be constructed by expressed protein ligation, in which complementary labeled and unlabeled peptide segments are prepared by recombinant gene expression and linked by means of chemical ligation. The construction of such hybrid isotopomers is exemplified here with the paradigmatic enzyme dihydrofolate reductase (DHFR) from Escherichia coli.
Collapse
|
9
|
Yang J, Zhao J. Recent developments in peptide ligation independent of amino acid side-chain functional group. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9056-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Harpaz Z, Loibl S, Seitz O. Native chemical ligation at a base-labile 4-mercaptobutyrate Nα-auxiliary. Bioorg Med Chem Lett 2016; 26:1434-7. [DOI: 10.1016/j.bmcl.2016.01.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 11/25/2022]
|
11
|
Loibl SF, Harpaz Z, Seitz O. A Type of Auxiliary for Native Chemical Peptide Ligation beyond Cysteine and Glycine Junctions. Angew Chem Int Ed Engl 2015; 54:15055-9. [DOI: 10.1002/anie.201505274] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/17/2015] [Indexed: 11/11/2022]
|
12
|
Loibl SF, Harpaz Z, Seitz O. Ein Auxiliartyp für die native chemische Peptidligation jenseits von Cystein und Glycin. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|