1
|
He KH, Jin N, Chen JC, Zheng YF, Pan F. Ketone Skeletal Modification via a Metallaphotoredox-Catalyzed Deacylation and Acylation Strategy. Org Lett 2024; 26:9503-9507. [PMID: 39465911 DOI: 10.1021/acs.orglett.4c03456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Herein, we describe a dual catalytic strategy that employs dihydroquinazolinones, derived from ketone analogs, as versatile intermediates for acylation via α C-C cleavage with 2-pyridyl esters, facilitating the efficient synthesis of a variety of ketones. The reaction accommodates a wide range of ketones and carboxylic acids, showing tolerance to various functional groups. The versatility of this synthetic technique is further highlighted through its application in the late-stage modification of pharmaceuticals and biologically active natural products.
Collapse
Affiliation(s)
- Ke-Han He
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - Na Jin
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - Jia-Cai Chen
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - You-Fen Zheng
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu 610068, People's Republic of China
| |
Collapse
|
2
|
Gola AK, Kumar N, Pandey SK. I 2-Promoted Chemoselective Annulative Coupling of 2-Aminobenzamides with Sulfoxonium Ylides: Easy Access to Quinazolinones. J Org Chem 2024; 89:12410-12420. [PMID: 39160687 DOI: 10.1021/acs.joc.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A flexible and metal-free synthetic approach for synthesizing 2-benzoyl quinazolinones and 2-aryl quinazolinones via molecular iodine-mediated annulative coupling of sulfoxonium ylides with 2-aminobenzamides has been disclosed. The method demonstrates remarkable chemoselectivity and efficiency, leading to high yields of 2-benzoyl quinazolinones and 2-aryl quinazolinones under optimized conditions. The broad substrate scope, scalability, and practical utility were highlighted through diverse applications, including gram-scale reactions and the synthesis of biologically significant compounds such as tryptanthrin and the chemo/biosensor derivative.
Collapse
Affiliation(s)
- Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Naveen Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
3
|
Wang T, Zhang Z, Gao F, Yan X. Homologation of Ketones: Direct Transformation of Alkyl Ketones to Aryl Ketones via Photoredox Catalyzed Deacylation-Aroylation Sequence. Org Lett 2024; 26:6915-6920. [PMID: 39115264 DOI: 10.1021/acs.orglett.4c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Ketones, as essential functional group skeletons, have garnered significant interest due to their diverse transformations. Herein, we describe a versatile photoredox catalyzed deacylation-aroylation strategy that enables the direct transformation of alkyl ketones to aryl ketones. This process involves photoredox deacylation of dihydroquinazolinones derived from alkyl ketones to generate alkyl radicals, followed by subsequent NHC-catalyzed or NHC-mediated radical aroylation.
Collapse
Affiliation(s)
- Tian Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Fan Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
4
|
Zhang Z, Zhu Q, Pyle D, Zhou X, Dong G. Methyl Ketones as Alkyl Halide Surrogates: A Deacylative Halogenation Approach for Strategic Functional Group Conversions. J Am Chem Soc 2023; 145:21096-21103. [PMID: 37712624 PMCID: PMC11102776 DOI: 10.1021/jacs.3c08176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Alkyl halides are versatile precursors to access diverse functional groups (FGs). Due to their lability, the development of surrogates for alkyl halides is strategically important for complex molecule synthesis. Given the stability and ease of derivatization inherent in common alkyl ketones, here we report a deacylative halogenation approach to convert various methyl ketones to the corresponding alkyl chlorides, bromides, and iodides. The reaction is driven by forming an aromatic byproduct, i.e., 1,2,4-triazole, in which N'-methylpicolinohydrazonamide (MPHA) is employed to form a prearomatic intermediate and halogen atom-transfer (XAT) reagents are used to quench the alkyl radical intermediate. The reaction is efficient in yielding primary and secondary alkyl halides from a wide range of methyl ketones with broad FG tolerance. It also works for complex natural-product-derived and fluoro-containing substrates. In addition, one-pot conversions of methyl ketones to various other FGs and annulations with alkenes and alkynes through deacylative halogenation are realized. Moreover, an unusual iterative homologation of alkyl iodides is also demonstrated. Finally, mechanistic studies reveal an intriguing double XAT process for the deacylative iodination reaction, which could have implications beyond this work.
Collapse
Affiliation(s)
- Zining Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Qi Zhu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel Pyle
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Xukai Zhou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Xu L, Shi H. Ruthenium-Catalyzed Activation of Nonpolar C-C Bonds via π-Coordination-Enabled Aromatization. Angew Chem Int Ed Engl 2023; 62:e202307285. [PMID: 37379224 DOI: 10.1002/anie.202307285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Activation of C-C bonds allows editing of molecular skeletons, but methods for selective activation of nonpolar C-C bonds in the absence of a chelation effect or a driving force derived from opening of a strained ring are scarce. Herein, we report a method for ruthenium-catalyzed activation of nonpolar C-C bonds of pro-aromatic compounds by means of π-coordination-enabled aromatization. This method was effective for cleavage of C-C(alkyl) and C-C(aryl) bonds and for ring-opening of spirocyclic compounds, providing an array of benzene-ring-containing products. The isolation of a methyl ruthenium complex intermediate supports a mechanism involving ruthenium-mediated C-C bond cleavage.
Collapse
Affiliation(s)
- Lun Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
6
|
Lv XY, Abrams R, Martin R. Copper-Catalyzed C(sp 3 )-Amination of Ketone-Derived Dihydroquinazolinones by Aromatization-Driven C-C Bond Scission. Angew Chem Int Ed Engl 2023; 62:e202217386. [PMID: 36576703 DOI: 10.1002/anie.202217386] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
Herein, we describe the development of a copper-catalyzed C(sp3 )-amination of proaromatic dihydroquinazolinones derived from ketones. The reaction is enabled by the intermediacy of open-shell species arising from homolytic C-C bond-cleavage driven by aromatization. The protocol is characterized by its operational simplicity and generality, including chemical diversification of advanced intermediates.
Collapse
Affiliation(s)
- Xin-Yang Lv
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Roman Abrams
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
7
|
Hu Z, Li R, Yang X. Pyridine coordination enabled stepwise PT/ET N-H transfer and metal-independent C-C cleavage mechanism for Cu-mediated dehydroacylation of unstrained ketones. Dalton Trans 2022; 51:18409-18415. [PMID: 36416298 DOI: 10.1039/d2dt03434d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A density functional theory study of copper-mediated dehydroacylation of 4-phenyl-2-butanone to the corresponding olefin reveals a flexible N-H transfer process and a metal-independent C-C cleavage mechanism. When N'-methylpicolinohydrazonamide (MPHA) acts as the activating reagent, N-H cleavage can easily take place via stepwise proton transfer/electron transfer (PT/ET) and the rate-determining step is C-C homolysis with a total free energy barrier of 22.6 kcal mol-1, which is consistent with experimental observation of no kinetic isotope effects (KIE) at β-H. Besides, copper is found to have little influence on C-C cleavage, but is responsible for triggering single electron oxidation of the pre-aromatic intermediate (PAI). When replacing MPHA with picolinohydrazonamide (PHA), the second N-H transfer is 2.7 kcal mol-1 more favorable than C-C cleavage and dominates the pathway to aromatization, which explains there being no C-C cleavage product well. When N'-methylbenzohydrazonamide (MBHA) is adopted, the lack of pyridine coordination significantly reduces the stability of CuII and N-H transfer proceeds via a much more difficult proton coupled electron transfer (PCET) pathway, thus making N-H cleavage a rate-determining step with a total free energy barrier of up to 28.1 kcal mol-1.
Collapse
Affiliation(s)
- Zhiyun Hu
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, P. R. China.
| | - Rongrong Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinzheng Yang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Dihydroquinazolinones as adaptative C(sp 3) handles in arylations and alkylations via dual catalytic C-C bond-functionalization. Nat Commun 2022; 13:2394. [PMID: 35504911 PMCID: PMC9064991 DOI: 10.1038/s41467-022-29984-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
C–C bond forming cross-couplings are convenient technologies for the construction of functional molecules. Consequently, there is continual interest in approaches that can render traditionally inert functionality as cross-coupling partners, included in this are ketones which are widely-available commodity chemicals and easy to install synthetic handles. Herein, we describe a dual catalytic strategy that utilizes dihydroquinazolinones derived from ketone congeners as adaptative one-electron handles for forging C(sp3) architectures via α C–C cleavage with aryl and alkyl bromides. Our approach is achieved by combining the flexibility and modularity of nickel catalysis with the propensity of photoredox events for generating open-shell reaction intermediates. This method is distinguished by its wide scope and broad application profile––including chemical diversification of advanced intermediates––, providing a catalytic technique complementary to existing C(sp3) cross-coupling reactions that operates within the C–C bond-functionalization arena. Although derived from feedstock chemicals and therefore in principle abundant, ketones are not widely used as cross-coupling partners in organic synthesis. Herein, the authors use ketone derivatives as one-electron handles for forging C(sp3) architectures via dual photo- and nickel catalysis.
Collapse
|
9
|
Zhang R, Ma R, Fu Q, Chen J, Ma Y. I 2 /PhNO 2 Mediated Synthesis of Quinazolin-4(3 H)-ones by C(CO)—C Bond Oxidative Cleavage of Acetophenones and Amination with 2-Aminobenzamides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Sahoo S, Pal S. Copper-Catalyzed One-Pot Synthesis of Quinazolinones from 2-Nitrobenzaldehydes with Aldehydes: Application toward the Synthesis of Natural Products. J Org Chem 2021; 86:18067-18080. [PMID: 34813342 DOI: 10.1021/acs.joc.1c02343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel, efficient, and atom-economical approach for the construction of quinazolinones from 2-nitrobenzaldehydes has been unveiled via copper-catalyzed nitrile formation, hydrolysis, and reduction in one pot for the first time. In this reaction, urea is used as a source of nitrogen for nitrile formation, hydrazine hydrate is used for both the reduction of the nitro group and the hydrolysis of nitrile, and atmospheric oxygen is used as the sole oxidant. The method portrays a wide substrate scope with good functional group tolerances. Moreover, this method was applied for the synthesis of schizocommunin, tryptanthrin, phaitanthrin-A, phaitanthrin-B, and 8H-quinazolino[4,3-b]quinazolin-8-one.
Collapse
Affiliation(s)
- Subrata Sahoo
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Shantanu Pal
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
11
|
Zhou X, Xu Y, Dong G. Olefination via Cu-Mediated Dehydroacylation of Unstrained Ketones. J Am Chem Soc 2021; 143:20042-20048. [PMID: 34807585 DOI: 10.1021/jacs.1c09587] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dehydroacylation of ketones to olefins is realized under mild conditions, which exhibits a unique reaction pathway involving aromatization-driven C-C cleavage to remove the acyl moiety, followed by Cu-mediated oxidative elimination to form an alkene between the α and β carbons. The newly adopted N'-methylpicolinohydrazonamide (MPHA) reagent is key to enable efficient cleavage of ketone C-C bonds at room temperature. Diverse alkyl- and aryl-substituted olefins, dienes, and special alkenes are generated with broad functional group tolerance. Strategic applications of this method are also demonstrated.
Collapse
Affiliation(s)
- Xukai Zhou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Yan Xu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Selective Synthesis of 2-(1,2,3-Triazoyl) Quinazolinones through Copper-Catalyzed Multicomponent Reaction. Catalysts 2021. [DOI: 10.3390/catal11101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We describe here our results from the copper-catalyzed three component reaction of 2-azidobenzaldehyde, anthranilamide and terminal alkynes, using Et3N as base, and DMSO as solvent. Depending on the temperature and amount of Et3N used in the reactions, 1,2,3-triazolyl-quinazolinones or 1,2,3-triazolyl-dihydroquinazolinone could be obtained. When the reactions were performed at 100 °C using 2 equivalents of Et3N, 1,2,3-triazolyl-dihydroquinazolinone was formed in 82% yield, whereas reactions carried out at 120 °C using 1 equivalent of Et3N provided 1,2,3-triazolyl-quinazolinones in moderate-to-good yields.
Collapse
|
13
|
Zhang F, Hou H, Xu X, Chen Z, Ke F. Visible-Light-Induced Preparation of Quinazolinones by Oxidation of Benzyl Alcohols in Water. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202007027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Wang K, Chen H, Dai X, Huang X, Feng Z. Palladium-catalyzed one-pot synthesis of 2-substituted quinazolin-4(3 H)-ones from o-nitrobenzamide and alcohols. RSC Adv 2021; 11:13119-13123. [PMID: 35423854 PMCID: PMC8697358 DOI: 10.1039/d1ra01755a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
Palladium-catalyzed 2-substituted quinazolin-4(3H)-one formation from readily available o-nitrobenzamides and alcohols using hydrogen transfer is described. Various quinazolin-4(3H)-ones were obtained in good to high yields. The cascade reaction including alcohol oxidation, nitro reduction, condensation, and dehydrogenation occurs without any added reducing or oxidizing agent. Palladium-catalyzed 2-substituted quinazolin-4(3H)-one formation from readily available o-nitrobenzamides and alcohols using hydrogen transfer is described. Various quinazolin-4(3H)-ones were obtained in good to high yields.![]()
Collapse
Affiliation(s)
- Ke Wang
- Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Hao Chen
- Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Xinyan Dai
- Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Xupeng Huang
- Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Zhiqiang Feng
- Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| |
Collapse
|
15
|
Pan W, Wang Y, Li T, Liu J, Wang X. An efficient synthesis of 6‐benzyl‐2‐arylthieno[2,3‐
d
]pyrimidin‐4(
3
H
)‐ones catalyzed by
HCl
involving a
Friedel‐Crafts
alkylation reaction. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wan‐Chen Pan
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University Xuzhou P. R. China
| | - Yi‐Chun Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University Xuzhou P. R. China
| | - Tuan‐Jie Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University Xuzhou P. R. China
| | - Jian‐Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University Xuzhou P. R. China
| | - Xiang‐Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University Xuzhou P. R. China
| |
Collapse
|
16
|
Latha G, Devarajan N, Suresh P. Framework Copper Catalyzed Oxidative Synthesis of Quinazolinones: A Benign Approach Using Cu
3
(BTC)
2
MOF as an Efficient and Reusable Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.202002661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ganesapandian Latha
- Supramolecular and Catalysis Lab Dept. of Natural Products Chemistry School of Chemistry Madurai Kamaraj University Madurai 625021 India
| | - Nainamalai Devarajan
- Supramolecular and Catalysis Lab Dept. of Natural Products Chemistry School of Chemistry Madurai Kamaraj University Madurai 625021 India
| | - Palaniswamy Suresh
- Supramolecular and Catalysis Lab Dept. of Natural Products Chemistry School of Chemistry Madurai Kamaraj University Madurai 625021 India
| |
Collapse
|
17
|
Li L, Fang L, Wu W, Zhu J. Visible-Light-Mediated Intermolecular Radical Conjugate Addition for the Construction of Vicinal Quaternary Carbon Centers. Org Lett 2020; 22:5401-5406. [PMID: 32628495 DOI: 10.1021/acs.orglett.0c01724] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The visible light-driven organophotoredox catalysis is reported for the construction of vicinal quaternary carbon centers. Intermolecular conjugate addition of alkyl radicals, derived from 2,2-disubstituted dihydroquinazolinones, to Michael acceptors under blue light irradiation and rhodamine B catalysis allows the facile assembly of diverse, vicinal secondary/quaternary, tertiary/quaternary, and quaternary/quaternary carbon centers at room temperature. Our method provides a synthetically versatile protocol since both 2,2-disubstituted dihydroquinazolinones and Michael acceptors can be conveniently prepared from readily available ketones.
Collapse
Affiliation(s)
- Lei Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lili Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| | - Weiping Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Donthiboina K, Mani GS, Shankaraiah N, Kamal A. Iodine‐Mediated Oxidative Annulation by C–C Cleavage: A Domino Synthetic Approach to Quinazolinones and Benzo[4,5]imidazo[1,2‐
c
]quinazolines. ChemistrySelect 2020. [DOI: 10.1002/slct.202000682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Geeta Sai Mani
- Department of Medicinal Chemistry NIPER-Hyderabad Hyderabad 500 037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry NIPER-Hyderabad Hyderabad 500 037 India
| | - Ahmed Kamal
- Department of Medicinal Chemistry NIPER-Hyderabad Hyderabad 500 037 India
- School of Pharmaceutical Education and Research (SPER) Jamia Hamdard New Delhi 110062 India
| |
Collapse
|
19
|
Abdullaha M, Mohammed S, Ali M, Kumar A, Vishwakarma RA, Bharate SB. Discovery of Quinazolin-4(3 H)-ones as NLRP3 Inflammasome Inhibitors: Computational Design, Metal-Free Synthesis, and in Vitro Biological Evaluation. J Org Chem 2019; 84:5129-5140. [PMID: 30896160 DOI: 10.1021/acs.joc.9b00138] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NLRP3 inflammasome is an important therapeutic target for a number of human diseases. Herein, computationally designed series of quinazolin-4(3 H)-ones were synthesized using iodine-catalyzed coupling of arylalkynes (or styrenes) with O-aminobenzamides. The key event in this transformation involves the oxidative cleavage of the C-C triple/double bond and the release of formaldehyde. The reaction relies on the C-N bond formation along with the C-C bond cleavage under metal-free conditions. The nitro-substituted quinazolin-4(3 H)-one 2k inhibited NLRP3 inflammasome (IC50 5 μM) via the suppression of IL-1β release from ATP-stimulated J774A.1 cells.
Collapse
|
20
|
Mao S, Luo K, Wang L, Zhao HY, Shergalis A, Xin M, Neamati N, Jin Y, Zhang SQ. Metal-Free C-2-H Alkylation of Quinazolin-4-ones with Alkanes via Cross-Dehydrogenative Coupling. Org Lett 2019; 21:2365-2368. [DOI: 10.1021/acs.orglett.9b00638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kaixiu Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Lu Wang
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
21
|
An J, Wang Y, Zhang Z, Zhao Z, Zhang J, Wang F. The Synthesis of Quinazolinones from Olefins, CO, and Amines over a Heterogeneous Ru-clusters/Ceria Catalyst. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinghua An
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yehong Wang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jian Zhang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
22
|
An J, Wang Y, Zhang Z, Zhao Z, Zhang J, Wang F. The Synthesis of Quinazolinones from Olefins, CO, and Amines over a Heterogeneous Ru-clusters/Ceria Catalyst. Angew Chem Int Ed Engl 2018; 57:12308-12312. [DOI: 10.1002/anie.201806266] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/14/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Jinghua An
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yehong Wang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jian Zhang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
23
|
Badolato M, Aiello F, Neamati N. 2,3-Dihydroquinazolin-4(1 H)-one as a privileged scaffold in drug design. RSC Adv 2018; 8:20894-20921. [PMID: 35542353 PMCID: PMC9080947 DOI: 10.1039/c8ra02827c] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
2,3-Dihydroquinazolin-4-one (DHQ) belongs to the class of nitrogen-containing heterocyclic compounds representing a core structural component in various biologically active compounds. In the past decades, several methodologies have been developed for the synthesis of the DHQ framework, especially the 2-substituted derivatives. Unfortunately, multistep syntheses, harsh reaction conditions, and the use of toxic reagents and solvents have limited their full potential as a versatile fragment. Recently, use of green chemistry and alternative strategies are being explored to prepare diverse DHQ derivatives. This fragment is used as a synthon for the preparation of biologically active quinazolinones and as a functional substrate for the synthesis of modified DHQ derivatives exhibiting different biological properties. In this review, we provide a comprehensive assessment of the synthesis and biological evaluations of DHQ derivatives.
Collapse
Affiliation(s)
- Mariateresa Badolato
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Ed. Polifunzionale 87036 Arcavacata di Rende CS Italy
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Ed. Polifunzionale 87036 Arcavacata di Rende CS Italy
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex 1600 Huron Parkway Ann Arbor MI 48109 USA
| |
Collapse
|
24
|
Yamaguchi K, Kawaguchi SI, Sonoda M, Tanimori S, Ogawa A. Copper-catalyzed tandem reaction directed toward synthesis of 2,2-disubstituted quinazolinones from vinyl halides and 2-aminobenzamides. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Digwal CS, Yadav U, Ramya PVS, Sana S, Swain B, Kamal A. Vanadium-Catalyzed Oxidative C(CO)–C(CO) Bond Cleavage for C–N Bond Formation: One-Pot Domino Transformation of 1,2-Diketones and Amidines into Imides and Amides. J Org Chem 2017; 82:7332-7345. [DOI: 10.1021/acs.joc.7b00950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chander Singh Digwal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Upasana Yadav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - P. V. Sri Ramya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Sravani Sana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Ahmed Kamal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| |
Collapse
|
26
|
Zhai F, Jordan RF. Autoxidation of Heterocyclic Aminals. ACS OMEGA 2017; 2:3055-3063. [PMID: 31457639 PMCID: PMC6641016 DOI: 10.1021/acsomega.7b00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/12/2017] [Indexed: 06/10/2023]
Abstract
The autoxidation reactions of 2-acyl-2,3-dihydroquinazolin-4(1H)-ones 4a and 5a and 2,2'-bis(dihydroquinazolinone) 6a are described. These reactions generate aminyl radicals that undergo β-C-C cleavage, and subsequent reactions of the resulting C-based radicals with O2 lead to diverse products with good selectivity, depending on the structure of the substrate. Oxidation of 4a, in which the 2-acyl group is part of a cyclic acenaphthenone unit, yields a heterocyclic C-hydroperoxylaminal via 1,2-acyl migration. Oxidation of 5a, which contains a 2-acetyl group, yields peracetic acid and a quinazolinone product. Oxidation of 6a forms a bis(quinazolinone) by net dehydrogenation.
Collapse
|
27
|
Solvent-free copper-catalyzed three-component synthesis of 2-substituted quinazolin-4(3H)-ones. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1804-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
A novel and efficient synthesis of 2-substituted quinazolin-4(3H)-ones by the reaction of (het)arylmethanamines with isatoic anhydride. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Luo WK, Shi X, Zhou W, Yang L. Iodine-Catalyzed Oxidative Functionalization of Azaarenes with Benzylic C(sp3)–H Bonds via N-Alkylation/Amidation Cascade: Two-Step Synthesis of Isoindolo[2,1-b]isoquinolin-7(5H)-one. Org Lett 2016; 18:2036-9. [DOI: 10.1021/acs.orglett.6b00646] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wen-Kun Luo
- Key Laboratory for Environmentally
Friendly Chemistry and Application of the Ministry of Education, College
of Chemistry, Xiangtan University, Hunan 411105, China
| | - Xin Shi
- Key Laboratory for Environmentally
Friendly Chemistry and Application of the Ministry of Education, College
of Chemistry, Xiangtan University, Hunan 411105, China
| | - Wang Zhou
- Key Laboratory for Environmentally
Friendly Chemistry and Application of the Ministry of Education, College
of Chemistry, Xiangtan University, Hunan 411105, China
| | - Luo Yang
- Key Laboratory for Environmentally
Friendly Chemistry and Application of the Ministry of Education, College
of Chemistry, Xiangtan University, Hunan 411105, China
| |
Collapse
|
30
|
Yang L, Shi X, Hu B, Wang L. Iodine‐Catalyzed Oxidative Benzylic C−H Bond Amination of Azaarenes: Practical Synthesis of Quinazolin‐4(3
H
)‐ones. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Luo Yang
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of EducationCollege of ChemistryXiangtan University Xiangtan Hunan 411105 China
| | - Xin Shi
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of EducationCollege of ChemistryXiangtan University Xiangtan Hunan 411105 China
| | - Ben‐Quan Hu
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of EducationCollege of ChemistryXiangtan University Xiangtan Hunan 411105 China
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Li‐Xia Wang
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
31
|
Tang L, Zhao X, Zou G, Zhou Y, Yang X. Heterogeneous Gold-Catalyzed Cascade Hydrogen-Transfer Strategy for Selective Synthesis of Quinazolinones in Water. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201500512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; Xinyang 464000 P. R. China
| | - Xianghua Zhao
- College of Chemistry and Chemical Engineering; Xinyang Normal University; Xinyang 464000 P. R. China
| | - Guodong Zou
- College of Chemistry and Chemical Engineering; Xinyang Normal University; Xinyang 464000 P. R. China
| | - Yuqiang Zhou
- College of Chemistry and Chemical Engineering; Xinyang Normal University; Xinyang 464000 P. R. China
| | - Xingkun Yang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; Xinyang 464000 P. R. China
| |
Collapse
|
32
|
Hu BQ, Cui J, Wang LX, Tang YL, Yang L. Metal-free synthesis of quinazolinones without any additives in water. RSC Adv 2016. [DOI: 10.1039/c6ra05777b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Here we report that an excess amount of aldehyde, in particular, aliphatic aldehyde, without any additives, efficiently facilitates the oxidation of aminal intermediates to quinazolinones in pure water.
Collapse
Affiliation(s)
- Ben-Quan Hu
- Key Laboratory for Environmental Friendly Chemistry and Application
- Department of Chemistry
- Xiangtan University
- Hunan 411105
- PR China
| | - Jie Cui
- Center for Physicochemical Analysis and Measurement
- Institute of Chemistry
- Chinese Academy of Sciences (ICCAS)
- Beijing 100190
- China
| | - Li-Xia Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Center for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Ya-Lin Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Center for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Luo Yang
- Key Laboratory for Environmental Friendly Chemistry and Application
- Department of Chemistry
- Xiangtan University
- Hunan 411105
- PR China
| |
Collapse
|
33
|
Vaidya SD, Argade NP. A Biomimetic Synthesis of Phaitanthrin E Involving a Fragmentation of sp3 Carbon–Carbon Bond: Synthesis and Rearrangement of Phaitanthrin D to Phaitanthrin E. Org Lett 2015; 17:6218-21. [DOI: 10.1021/acs.orglett.5b03203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sagar D. Vaidya
- Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune 411 008, India
| | - Narshinha P. Argade
- Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune 411 008, India
| |
Collapse
|