1
|
Ghosh S, Pyne P, Ghosh A, Choudhury S, Hajra A. Visible-light-induced cascade reaction: a sustainable approach towards molecular complexity. Org Biomol Chem 2023; 21:1591-1628. [PMID: 36723242 DOI: 10.1039/d2ob02062a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Photoredox catalysis has demonstrated rapid evolution in the field of synthetic organic chemistry. On the other hand, the splendour of cascade reactions in providing complex molecular architectures renders them a cutting-edge research area. Therefore, the merging of photocatalysis with cascade synthesis brings out a synthetic paradigm with immense potential. The development of photocascade catalysis for a target molecule with a particular molecular skeleton and stereochemical framework presents certain challenges but provides a robust and environmentally benign synthetic alternative. This comprehensive review assembles all the accomplishments and highlights of visible-light-induced cascade reactions with literature coverage up to October 2022.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Swagata Choudhury
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| |
Collapse
|
2
|
Deng Y, Yang T, Wang H, Yang C, Cheng L, Yin SF, Kambe N, Qiu R. Recent Progress on Photocatalytic Synthesis of Ester Derivatives and Reaction Mechanisms. Top Curr Chem (Cham) 2021; 379:42. [PMID: 34668085 DOI: 10.1007/s41061-021-00355-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022]
Abstract
Esters and their derivatives are distributed widely in natural products, pharmaceuticals, fine chemicals and other fields. Esters are important building blocks in pharmaceuticals such as clopidogrel, methylphenidate, fenofibrate, travoprost, prasugrel, oseltamivir, eszopiclone and fluticasone. Therefore, esterification reaction becomes more and more popular in the photochemical field. In this review, we highlight three types of reactions to synthesize esters using photochemical strategies. The reaction mechanisms involve mainly single electron transfer, energy transfer or other radical procedures.
Collapse
Affiliation(s)
- Yiqiang Deng
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| | - Tianbao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hui Wang
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Chong Yang
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Lihua Cheng
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Nobuaki Kambe
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Renhua Qiu
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China. .,State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
3
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Wang H, Gao Y, Zhou C, Li G. Visible-Light-Driven Reductive Carboarylation of Styrenes with CO2 and Aryl Halides. J Am Chem Soc 2020; 142:8122-8129. [DOI: 10.1021/jacs.0c03144] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhen Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Chunlin Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Corrigan N, Shanmugam S, Xu J, Boyer C. Photocatalysis in organic and polymer synthesis. Chem Soc Rev 2018; 45:6165-6212. [PMID: 27819094 DOI: 10.1039/c6cs00185h] [Citation(s) in RCA: 466] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review, with over 600 references, summarizes the recent applications of photoredox catalysis for organic transformation and polymer synthesis. Photoredox catalysts are metallo- or organo-compounds capable of absorbing visible light, resulting in an excited state species. This excited state species can donate or accept an electron from other substrates to mediate redox reactions at ambient temperature with high atom efficiency. These catalysts have been successfully implemented for the discovery of novel organic reactions and synthesis of added-value chemicals with an excellent control of selectivity and stereo-regularity. More recently, such catalysts have been implemented by polymer chemists to post-modify polymers in high yields, as well as to effectively catalyze reversible deactivation radical polymerizations and living polymerizations. These catalysts create new approaches for advanced organic transformation and polymer synthesis. The objective of this review is to give an overview of this emerging field to organic and polymer chemists as well as materials scientists.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Niu T, Jiang D, Ni B. Visible-light-induced direct oxysulfonylation of alkynes with sulfonyl chlorides and HCl. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Rose Bengal-photosensitized oxidation of tertiary amines for the synthesis of bis-1,3-dicarbonyl compounds. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Niu TF, Cheng J, Zhuo CL, Jiang DY, Shu XG, Ni BQ. Visible-light-promoted oxidative difunctionalization of alkenes with sulfonyl chlorides to access β-keto sulfones under aerobic conditions. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Kovvuri J, Nagaraju B, Kamal A, Srivastava AK. An Efficient Synthesis of 2-Substituted Benzimidazoles via Photocatalytic Condensation of o-Phenylenediamines and Aldehydes. ACS COMBINATORIAL SCIENCE 2016; 18:644-650. [PMID: 27631587 DOI: 10.1021/acscombsci.6b00107] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photocatalytic method has been developed for the efficient synthesis of functionalized benzimidazoles. This protocol involves photocatalytic condensation of o-phenylenediamines with various aldehydes using the Rose Bengal as photocatalyst. The method was found to be general and was successfully employed for accessing pharmaceutically important benzimidazoles by the condensation of aromatic, heteroaromatic and aliphatic aldehydes with o-phenylenediamines, in good-to-excellent yields. Notably, the method was found to be effective for the condensation of less reactive heterocyclic aldehydes with o-phenylenediamines.
Collapse
Affiliation(s)
- Jeshma Kovvuri
- Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India
- Medicinal
Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Burri Nagaraju
- Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India
- Medicinal
Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Ahmed Kamal
- Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India
- Medicinal
Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Catalytic
Chemistry Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajay K. Srivastava
- Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India
- Medicinal
Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| |
Collapse
|
10
|
Ghosh I, Marzo L, Das A, Shaikh R, König B. Visible Light Mediated Photoredox Catalytic Arylation Reactions. Acc Chem Res 2016; 49:1566-77. [PMID: 27482835 DOI: 10.1021/acs.accounts.6b00229] [Citation(s) in RCA: 537] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introducing aryl- and heteroaryl moieties into molecular scaffolds are often key steps in the syntheses of natural products, drugs, or functional materials. A variety of cross-coupling methods have been well established, mainly using transition metal mediated reactions between prefunctionalized substrates and arenes or C-H arylations with functionalization in only one coupling partner. Although highly developed, one drawback of the established sp2-sp2 arylations is the required transition metal catalyst, often in combination with specific ligands and additives. Therefore, photoredox mediated arylation methods have been developed as alternative over the past decade. We begin our survey with visible light photo-Meerwein arylation reactions, which allow C-H arylation of heteroarenes, enones, alkenes, and alkynes with organic dyes, such as eosin Y, as the photocatalyst. A good number of examples from different groups illustrate the broad application of the reaction in synthetic transformations. While initially only photo-Meerwein arylation-elimination processes were reported, the reaction was later extended to photo-Meerwein arylation-addition reactions giving access to the photoinduced three component synthesis of amides and esters from alkenes, aryl diazonium salts, nitriles or formamides, respectively. Other substrates with redox-active leaving groups have been explored in photocatalyzed arylation reactions, such as diaryliodonium and triarylsulfonium salts, and arylsulfonyl chlorides. We discus some examples with their scope and limitations. The scope of arylation reagents for photoredox reactions was extended to aryl halides. The challenge here is the extremely negative reduction potential of aryl halides in the initial electron transfer step compared to, e.g., aryl diazonium or diaryliodonium salts. In order to reach reduction potentials over -2.0 V vs SCE two consecutive photoinduced electron transfer steps were used. The intermediary formed colored radical anion of the organic dye perylenediimide is excited by a second photon allowing the one electron reduction of acceptor substituted aryl chlorides. The radical anion of the aryl halide fragments under the loss of a halide ion and the aryl radical undergoes C-H arylation with biologically important pyrrole derivatives or adds to a double bond. Rhodamine 6G as an organic photocatalyst allows an even higher degree of control of the reaction. The dye is photoreduced in the presence of an amine donor under irradiation with green light (e.g., 530 nm), yielding its radical anion, which is a mild reducing reagent. The hypsochromic shift of the absorption of the rhodamine 6G radical anion toward blue region of the visible light spectrum allows its selective excitation using blue light (e.g., 455 nm). The excited radical anion is highly reducing and able to activate even bromoanisole for C-H arylation reactions, although only in moderate yield. Photoredox catalytic C-H arylation reactions are valuable alternatives to metal catalyzed reactions. They have an excellent functional group tolerance, could potentially avoid metal containing catalysts, and use visible light as a traceless reagent for the activation of arylating reagents.
Collapse
Affiliation(s)
- Indrajit Ghosh
- Institute of Organic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Leyre Marzo
- Institute of Organic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Amrita Das
- Institute of Organic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Rizwan Shaikh
- Institute of Organic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
11
|
Niu TF, Jiang DY, Li SY, Ni BQ, Wang L. A visible-light-induced chemoselective radical/oxidative addition domino process to access α-chloro and α-alkoxy aryl ketones. Chem Commun (Camb) 2016; 52:13105-13108. [DOI: 10.1039/c6cc07272k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-induced radical-triggered chemoselective domino process to access α,α-di-functionalized ketones under mild conditions has been developed.
Collapse
Affiliation(s)
- Teng-fei Niu
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Ding-yun Jiang
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Si-yuan Li
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Bang-qing Ni
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Liang Wang
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou
- P. R. China
| |
Collapse
|