1
|
Zhou Z, Gai L, Xu LW, Guo Z, Lu H. Disilane-bridged architectures: an emerging class of molecular materials. Chem Sci 2023; 14:10385-10402. [PMID: 37799998 PMCID: PMC10548527 DOI: 10.1039/d3sc02690f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
Disilanes are organosilicon compounds that contain saturated Si-Si bonds. The structural characteristics of Si-Si single bonds resemble those of C-C single bonds, but their electronic structure is more similar to that of C[double bond, length as m-dash]C double bonds, as Si-Si bonds have a higher HOMO energy level. These organosilicon compounds feature unique intramolecular σ electron delocalization, low ionization potentials, polarizable electronic structure, and σ-π interaction. It has been demonstrated that the employment of disilane units (Si-Si) is a versatile and effective approach for finely adjusting the photophysical properties of organic materials in both solution and solid states. In this review, we present and discuss the structure, properties, and relationships of novel σ-π-conjugated hybrid architectures with saturated Si-Si σ bonds. The application of disilane-bridged σ-conjugated compounds as optoelectronic materials, multifunctional solid-state emitters, CPL, and non-linear optical and stimuli-responsive materials is also reviewed.
Collapse
Affiliation(s)
- Zhikuan Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University 2318 Yuhangtang Road Hangzhou 311121 China
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University 2318 Yuhangtang Road Hangzhou 311121 China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University 2318 Yuhangtang Road Hangzhou 311121 China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University 163 Xianlin Avenue Nanjing 210023 China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University 2318 Yuhangtang Road Hangzhou 311121 China
| |
Collapse
|
2
|
Kwon YD, Byun Y, Kim HK. 18F-labelled BODIPY dye as a dual imaging agent: Radiofluorination and applications in PET and optical imaging. Nucl Med Biol 2021; 93:22-36. [PMID: 33276283 DOI: 10.1016/j.nucmedbio.2020.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022]
Abstract
Dual Positron emission tomography (PET)/optical imaging techniques have captured scientific interest for clinical applications due to their potential as an effective tool for visualizing in vivo information such as disease processes. 4,4'-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye has been considered an ideal platform strategy to achieve dual PET/optical imaging due to its photochemical nature and chemical structure. Various radiofluorination methods to prepare [18F]BODIPY dye have been developed and established, ranging from nucleophilic substitution reactions to isotope exchange reactions. In addition, 18F-labelled BODIPY dyes for biologically important targets have been used for in vivo and ex vivo studies. These studies proved the practicality of [18F]BODIPY dyes as a hybrid PET/optical imaging probe. In this review, recent advances in the synthesis and biological evaluation of 18F-labelled BODIPY dyes are described.
Collapse
Affiliation(s)
- Young-Do Kwon
- Department of Chemistry, Rice University, Houston, TX 77005, USA; Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea.
| |
Collapse
|
3
|
Sevinç G, Küçüköz B, Elmalı A, Hayvalı M. The synthesis of −1, −3, −5, −7, −8 aryl substituted boron-dipyrromethene chromophores: Nonlinear optical and photophysical characterization. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Wu S, Su F, Magee HY, Meldrum DR, Tian Y. cRGD functionalized 2,1,3-benzothiadiazole (BTD)-containing two-photon absorbing red-emitter-conjugated amphiphilic poly(ethylene glycol)-block-poly( ε-caprolactone) for targeted bioimaging. RSC Adv 2019; 9:34235-34243. [PMID: 31798837 PMCID: PMC6886675 DOI: 10.1039/c9ra06694b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A two-photon absorbing (2PA) red emitter group was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers, and further grafted with cyclo(Arg-Gly-Asp) (cRGD) peptide to form micelle 1. Micelle 1 with cRGD targeting groups were used for targeted bioimaging. For comparison, micelle 2 without the cRGD targeting groups were also prepared and investigated. The micelles were characterized using dynamic light scattering (DLS), showing average diameters of around 77 nm. The cRGD targeting group is known to bind specifically with αvβ3 integrin in cancer cells. In this study, αvβ3 integrin overexpressed human glioblastoma U87MG cell line and αvβ3 integrin deficient human cervical cancer HeLa cell line were chosen. Results showed that the cRGD targeting group enhanced the cellular uptake efficiency of the micelles significantly in αvβ3 integrin rich U87MG cells. Higher temperature (37 °C versus 4 °C) and calcium ions (with 3 M calcium chloride in the cell culture medium versus no addition of calcium ions) enhanced the cellular uptake efficiency, suggesting that the uptake of the micelles is through the endocytosis pathway in cells. A 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay was used to evaluate the cytotoxicity of the micelles and no significant cytotoxicity was observed. The BTD-containing two-photon absorbing emitter in the micelles showed a two-photon absorbing cross-section of 236 GM (1 GM = 1 × 10−50 cm4 s per photonper molecule) at 820 nm, which is among the highest values reported for red 2PA emitters. Because of the two-photon absorbing characteristics, micelle 1 was successfully used for two-photon fluorescence imaging targeted to U87MG cells under a two-photon fluorescence microscope. This study is the first report regarding the targeted imaging of a specific cancer cell line (herein, U87MG) using the BTD-conjugated-fluorophore-containing block copolymers. A two-photon absorbing (2PA) red emitter group was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers, and further grafted with cyclo(Arg-Gly-Asp) (cRGD) peptide to form micelle 1.![]()
Collapse
Affiliation(s)
- Shanshan Wu
- Guangdong Industry Polytechnic, Foshan Municipality Anti-counterfeiting Engineering Research Center, Guangzhou, Guangdong 510300, China
| | - Fengyu Su
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hansa Y Magee
- Knowledge Enterprise, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Deirdre R Meldrum
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
5
|
Ngoy BP, May AK, Mack J, Nyokong T. Optical Limiting and Femtosecond Pump-Probe Transient Absorbance Properties of a 3,5-distyrylBODIPY Dye. Front Chem 2019; 7:740. [PMID: 31737610 PMCID: PMC6834545 DOI: 10.3389/fchem.2019.00740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022] Open
Abstract
The optical limiting (OL) properties of a 3,5-di-p-benzyloxystyrylBODIPY dye with an p-acetamidophenyl moiety at the meso-position have been investigated by using the open-aperture Z-scan technique at 532 nm with 10 ns laser pulses. There is a ca. 140 nm red shift of the main spectral band to 644 nm relative to the corresponding BODIPY core dye, due to the incorporation of p-benzyloxystyryl groups at the 3,5-positions. As a result, there is relatively weak absorbance across most of the visible region under ambient light conditions. Analysis of the observed reverse saturable absorbance (RSA) profiles demonstrates that the dye is potentially suitable for use in optical limiting applications as has been reported previously for other 3,5-distyrylBODIPY dyes. Time-resolved transient absorption spectroscopy and kinetic studies with femtosecond and nanosecond scale laser pulses provide the first direct spectral evidence that excited state absorption (ESA) from the S1 state is responsible for the observed OL properties.
Collapse
Affiliation(s)
- Bokolombe P. Ngoy
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
- Département de Chimie, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Aviwe K. May
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| | - John Mack
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| |
Collapse
|
6
|
Ndebele N, Hlatshwayo Z, Ngoy BP, Kubheka G, Mack J, Nyokong T. Optical limiting properties of BODIPY dyes substituted with styryl or vinylene groups on the nanosecond timescale. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s108842461930009x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The results of recent studies on the optical limiting properties of BODIPY dyes at 532 and 1064 nm are described and compared. The optical limiting properties of novel 1,7-dimethyl-3,5-di-4-dihydroxyborylstyryl- and 3,5,7-tristyryl-1-methyl-BODIPY dyes were studied in CH2Cl2 and C6H6 and polystyrene thin films using the open aperture Z-scan technique at 532 nm with nanosecond laser pulses to provide an example of how the effective nonlinear absorption coefficient, the third order susceptibility, hyperpolarizability and limiting thresholds can be calculated.
Collapse
Affiliation(s)
- Nobuhle Ndebele
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Zweli Hlatshwayo
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Bokolombe P. Ngoy
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Gugu Kubheka
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
7
|
Sevinç G, Hayvalı M. The Synthesis of New Aryl Boron-Dipyrromethene Compounds: Photophysical and pH Responsive Properties. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.372452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
8
|
Zheng X, Du W, Gai L, Xiao X, Li Z, Xu L, Tian Y, Kira M, Lu H. Disilanylene-bridged BODIPY-based D–σ–A architectures: a novel promising series of NLO chromophores. Chem Commun (Camb) 2018; 54:8834-8837. [DOI: 10.1039/c8cc04962a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel series of disilanylene-bridged BODIPY-based chromophores have been reported.
Collapse
Affiliation(s)
- Xianghui Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University Hangzhou
- P. R. China
| | - Wei Du
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Department of Chemistry Anhui University Hefei
- P. R. China
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University Hangzhou
- P. R. China
| | - Xuqiong Xiao
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University Hangzhou
- P. R. China
| | - Zhifang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University Hangzhou
- P. R. China
| | - Liwen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University Hangzhou
- P. R. China
| | - Yupeng Tian
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Department of Chemistry Anhui University Hefei
- P. R. China
| | - Mitsuo Kira
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University Hangzhou
- P. R. China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University Hangzhou
- P. R. China
| |
Collapse
|
9
|
Jenkins R, Burdette MK, Foulger SH. Mini-review: fluorescence imaging in cancer cells using dye-doped nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra10473h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fluorescence imaging has gained increased attention over the past two decades as a viable means to detect a variety of cancers.
Collapse
Affiliation(s)
- Ragini Jenkins
- Center for Optical Materials Science and Engineering Technologies
- Department of Materials Science & Engineering
- Clemson University
- Clemson
- USA
| | - Mary K. Burdette
- Center for Optical Materials Science and Engineering Technologies
- Department of Materials Science & Engineering
- Clemson University
- Clemson
- USA
| | - Stephen H. Foulger
- Center for Optical Materials Science and Engineering Technologies
- Department of Materials Science & Engineering
- Clemson University
- Clemson
- USA
| |
Collapse
|
10
|
Xu S, Zhu Y, Li R, Su J, Li S, Zhou H, Wu J, Tian Y. Thiophene-based pyridine derivatives: synthesis, crystal structures, two-photon absorption properties and bio-imaging applications in the near-IR region. NEW J CHEM 2016. [DOI: 10.1039/c6nj00845c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two novel D–π–A structural chromophores showing large 2PA active cross-sections, low cytotoxicity and high stability in near-IR bio-imaging.
Collapse
Affiliation(s)
- Shasha Xu
- Department of Chemistry
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui University
- Hefei 230039
- P. R. China
| | - Yingzhong Zhu
- Department of Chemistry
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui University
- Hefei 230039
- P. R. China
| | - Rui Li
- Department of Chemistry
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui University
- Hefei 230039
- P. R. China
| | - Jian Su
- Department of Chemistry
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui University
- Hefei 230039
- P. R. China
| | - Shengli Li
- Department of Chemistry
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui University
- Hefei 230039
- P. R. China
| | - Hongping Zhou
- Department of Chemistry
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui University
- Hefei 230039
- P. R. China
| | - Jieying Wu
- Department of Chemistry
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui University
- Hefei 230039
- P. R. China
| | - Yupeng Tian
- Department of Chemistry
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui University
- Hefei 230039
- P. R. China
| |
Collapse
|