1
|
Fatima A, Bressan G, Ashworth EK, Page PCB, Bull JN, Meech SR. Substituent effects on the photophysics of the kaede chromophore. Phys Chem Chem Phys 2024; 26:29048-29059. [PMID: 39552575 DOI: 10.1039/d4cp03272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Kaede is the prototype of the optical highlighter proteins, which are an important subclass of the fluorescent proteins that can be permanently switched from green to red emitting forms by UV irradiation. This transformation has important applications in bioimaging. Optimising brightness, i.e. enhancing fluorescence characteristics, in these proteins is an important objective. At room temperature, the excited state dynamics of the red form of the kaede chromophore are dominated by a broad distribution of conformers with distinct excited state kinetics. Here, we investigate substituent effects on the photophysics of this form of the kaede chromophore. While an electron withdrawing substituent (nitro) red shifts the electronic spectra, the modified chromophores showed no significant solvatochromism. The lack of solvatochromism suggests small changes in permanent dipole moment between ground and excited electronic states, which is consistent with quantum chemical calculations. Ultrafast fluorescence and transient absorption spectroscopy reveal correlations between radiative and nonradiative decay rates of different conformers in the chromophores. The most significant effect of the substituents is to modify the distribution of conformers. The results are discussed in the context of enhancing brightness of optical highlighter proteins.
Collapse
Affiliation(s)
- Anam Fatima
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | - Philip C B Page
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | - James N Bull
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
2
|
Rudik DI, Perfilov MM, Sokolov AI, Chen C, Baleeva NS, Myasnyanko IN, Mishin AS, Fang C, Bogdanova YA, Baranov MS. Developing 1,4-Diethyl-1,2,3,4-tetrahydroquinoxalin-substituted Fluorogens Based on GFP Chromophore for Endoplasmic Reticulum and Lysosome Staining. Int J Mol Sci 2024; 25:10448. [PMID: 39408778 PMCID: PMC11477126 DOI: 10.3390/ijms251910448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
In the present study, we demonstrated that the introduction of a 1,4-diethyl-1,2,3,4-tetrahydroquinoxalin moiety into the arylidene part of GFP chromophore-derived compounds results in the formation of environment-sensitive fluorogens. The rationally designed and synthesized compounds exhibit remarkable solvent- and pH-dependence in fluorescence intensity. The solvent-dependent variation in fluorescence quantum yield makes it possible to use some of the proposed compounds as polarity sensors suitable for selective endoplasmic reticulum fluorescent labeling in living cells. Moreover, the pH-dependent emission intensity variation of other fluorogens makes them selective fluorescent labels for the lysosomes in living cells.
Collapse
Affiliation(s)
- Daniil I. Rudik
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (D.I.R.)
- Institute of Biochemical Technology and Nanotechnology, RUDN University, Miklukho-Maklaya 6, Moscow 117198, Russia
| | - Maxim M. Perfilov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (D.I.R.)
| | - Anatolii I. Sokolov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (D.I.R.)
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA (C.F.)
| | - Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (D.I.R.)
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Ivan N. Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (D.I.R.)
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Alexander S. Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (D.I.R.)
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA (C.F.)
| | - Yulia A. Bogdanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (D.I.R.)
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (D.I.R.)
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| |
Collapse
|
3
|
Sun A, Sun H, Anwar G, Lu X, Yan J. A conformationally-locked p-hydroxybenzylidene imidazolinone derivative for detecting Aβ 42 aggregation. Bioorg Med Chem Lett 2024; 98:129576. [PMID: 38061401 DOI: 10.1016/j.bmcl.2023.129576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
Alzheimer's disease (AD) is a common type of neurodegenerative disease, which can only be symptomatically relieved but does not yet have a cure. Among the different Aβ species, amyloid-β 42 (Aβ42) aggregates are proposed to be more neurotoxic than that of Aβ40, and oligomeric Aβ42 is thought to play a harmful role in the pathophysiology of AD. Therefore, the detection of Aβ42 aggregation is very meaningful in the AD field. We herein report a conformationally-locked p- hydroxybenzylidene imidazolinone derivative, BDI, which exhibits selectivity and specificity towards Aβ42 aggregation and remarkable fluorescent enhancement with a large Stokes shift (more than 100 nm). In the fluorescent co-localization study, BDI can sensitively detect a large population of Aβ42 aggregation over that of Aβ40 in the brain tissues of AD transgenic mouse models. Therefore, this new probe could provide a useful tool for the rapid detection of important Aβ species in AD.
Collapse
Affiliation(s)
- Anyang Sun
- Laboratory of Neurogenerative Diseases & Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Han Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Gulziba Anwar
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiuhong Lu
- Laboratory of Neurogenerative Diseases & Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Ikejiri M, Yoshimizu A, Shiota F, Nagayama A, Fujisaka A, Kuboki Y, Miyashita K. Viscosity-Induced Emission of 5-(Diarylmethylene)imidazolone with Extended Conjugation via Attachment of N-Methylpyrrole at the 2-Position. Chem Pharm Bull (Tokyo) 2024; 72:518-523. [PMID: 38825446 DOI: 10.1248/cpb.c24-00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
We have developed a series of 2-monoaryl-5-diarylmethylene analogs of the green fluorescent protein chromophore to study their viscosity-induced emission (VIE) properties. The analogs were synthesized by a condensation with methyl imidate and N-(diarylmethylene)glycinate. Among the analogs, the N-methylpyrrol-2-yl-substituted analog 1h induced the most remarkable VIE behavior in triglyceride and lipid bilayers probably due to the high π-electron-rich property of the pyrrole ring. The pyrrole substituent in imidazolone analogs can be expected to become a common template for introducing VIE behavior.
Collapse
Affiliation(s)
| | | | | | - Ai Nagayama
- Faculty of Pharmacy, Osaka Ohtani University
| | | | | | | |
Collapse
|
5
|
Krueger TD, Chen C, Fang C. Targeting Ultrafast Spectroscopic Insights into Red Fluorescent Proteins. Chem Asian J 2023; 18:e202300668. [PMID: 37682793 DOI: 10.1002/asia.202300668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next-generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady-state and time-resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinent cis-trans isomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited-state proton transfer in various LSSRFPs showcases the resolving power of wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red-emitting species. Moreover, recent progress in noncanonical RFPs with a site-specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| |
Collapse
|
6
|
Chen C, Henderson JN, Ruchkin DA, Kirsh JM, Baranov MS, Bogdanov AM, Mills JH, Boxer SG, Fang C. Structural Characterization of Fluorescent Proteins Using Tunable Femtosecond Stimulated Raman Spectroscopy. Int J Mol Sci 2023; 24:11991. [PMID: 37569365 PMCID: PMC10418586 DOI: 10.3390/ijms241511991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore-environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations. We systematically analyzed and discussed four factors underlying the vibrational properties of FP chromophores: sidechain structure, conjugation structure, chromophore conformation, and the protein environment. A prominent bond-stretching mode characteristic of the quinoidal resonance structure is found to be conserved in most FPs and model chromophores investigated, which can be used as a vibrational marker to interpret chromophore-environment interactions and structural effects on the electronic properties of the chromophore. The fundamental insights gained for these light-sensing units (e.g., protein active sites) substantiate the unique and powerful capability of wavelength-tunable FSRS in delineating FP chromophore properties with high sensitivity and resolution in solution and protein matrices. The comprehensive characterization for various FPs across a colorful palette could also serve as a solid foundation for future spectroscopic studies and the rational engineering of FPs with diverse and improved functions.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
| | - Dmitry A. Ruchkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jacob M. Kirsh
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Alexey M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| |
Collapse
|
7
|
Perfilov MM, Zaitseva ER, Baleeva NS, Kublitski VS, Smirnov AY, Bogdanova YA, Krasnova SA, Myasnyanko IN, Mishin AS, Baranov MS. Meta-CF 3-Substituted Analogues of the GFP Chromophore with Remarkable Solvatochromism. Int J Mol Sci 2023; 24:9923. [PMID: 37373071 DOI: 10.3390/ijms24129923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In this work, we have shown that the introduction of a trifluoromethyl group into the me-ta-position of arylidene imidazolones (GFP chromophore core) leads to a dramatic increase in their fluorescence in nonpolar and aprotic media. The presence of a pronounced solvent-dependent gradation of fluorescence intensity makes it possible to use these substances as fluorescent polarity sensors. In particular, we showed that one of the created compounds could be used for selective labeling of the endoplasmic reticulum of living cells.
Collapse
Affiliation(s)
- Maxim M Perfilov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Elvira R Zaitseva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Vadim S Kublitski
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, Moscow 121205, Russia
| | - Yulia A Bogdanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Svetlana A Krasnova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Alexander S Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| |
Collapse
|
8
|
Addison K, Roy P, Bressan G, Skudaite K, Robb J, Bulman Page PC, Ashworth EK, Bull JN, Meech SR. Photophysics of the red-form Kaede chromophore. Chem Sci 2023; 14:3763-3775. [PMID: 37035701 PMCID: PMC10074405 DOI: 10.1039/d3sc00368j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The chromophore responsible for colour switching in the optical highlighting protein Kaede has unexpectedly complicated excited state dynamics, which are measured and analysed here. This will inform the development of new imaging proteins.
Collapse
Affiliation(s)
- Kiri Addison
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Palas Roy
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Karolina Skudaite
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Josh Robb
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | | | - Eleanor K. Ashworth
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - James N. Bull
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Stephen R. Meech
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
9
|
Ferreira JRM, Esteves CIC, Marques MMB, Guieu S. Locking the GFP Fluorophore to Enhance Its Emission Intensity. Molecules 2022; 28:molecules28010234. [PMID: 36615428 PMCID: PMC9822164 DOI: 10.3390/molecules28010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
The Green Fluorescent Protein (GFP) and its analogues have been widely used as fluorescent biomarkers in cell biology. Yet, the chromophore responsible for the fluorescence of the GFP is not emissive when isolated in solution, outside the protein environment. The most accepted explanation is that the quenching of the fluorescence results from the rotation of the aryl-alkene bond and from the Z/E isomerization. Over the years, many efforts have been performed to block these torsional rotations, mimicking the environment inside the protein β-barrel, to restore the emission intensity. Molecule rigidification through chemical modifications or complexation, or through crystallization, is one of the strategies used. This review presents an overview of the strategies developed to achieve highly emissive GFP chromophore by hindering the torsional rotations.
Collapse
Affiliation(s)
- Joana R. M. Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
| | - Cátia I. C. Esteves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
| | - Maria Manuel B. Marques
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Samuel Guieu
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
10
|
Baleeva NS, Smirnov AY, Baranov MS. Synthesis and Optical Properties of the Conformationally Locked Diarylmethene Derivative of the GFP Chromophore. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Myasnyanko IN, Baleeva NS, Baranov MS. Study of the Position of the Conjugated Substitute Influence on the Optical Properties of the Kaede Protein Chromophore Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Szukalski A, Krawczyk P, Sahraoui B, Rosińska F, Jędrzejewska B. A Modified Oxazolone Dye Dedicated to Spectroscopy and Optoelectronics. J Org Chem 2022; 87:7319-7332. [PMID: 35588394 PMCID: PMC9171828 DOI: 10.1021/acs.joc.2c00500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Here we present a
newly synthesized bifunctional organic chromophore
with appealing spectroscopic and nonlinear optical features. The positions
of absorption and emission maxima of the dye vary with increasing
solvent polarity and exhibit positive solvatochromism. The determined
change in the dipole moment upon excitation based on the Bilot and
Kawski theory is 5.94 D, which corresponds to the intermolecular displacement
of a charge equal to 1.24 Å. An investigated organic-based system
represents a significant, repeatable, and stable over time optical
signal modulation in the manner of the refractive index value. Its
magnitude is varied both by optical pumping intensity as well as by
external frequency modulation, which indicates that such system is
an alluring and alternative core unit for optoelectronic devices and
complex networks. Then, the same active system, due to the nonresonant
mechanism of higher harmonics of light inducement, can provide second
and third harmonic signals. According to the introduced laser
line spatial modifications (parallel or perpendicular polarization
directions), it is resulted in output SHG signal with magnitude varied
about 100%. Its magnitude is noticeably small; however, to construct
sensitive optical sensors or infrared indicators, such feature may
guarantee satisfying circumstances.
Collapse
Affiliation(s)
- Adam Szukalski
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Przemysław Krawczyk
- Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, Kurpińskiego 5, Bydgoszcz 85-950, Poland
| | - Bouchta Sahraoui
- Laboratoire MOLTECH-Anjou, Université d'Angers, UFR Sciences, UMR 6200, CNRS, 2 Bd. Lavoisier, Angers Cedex 49045, France
| | - Faustyna Rosińska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, Bydgoszcz 85-326, Poland
| | - Beata Jędrzejewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, Bydgoszcz 85-326, Poland
| |
Collapse
|
13
|
Szukalski A, Krawczyk P, Sahraoui B, Jędrzejewska B. Multifunctional Oxazolone Derivative as an Optical Amplifier, Generator, and Modulator. J Phys Chem B 2022; 126:1742-1757. [PMID: 35179389 PMCID: PMC8900139 DOI: 10.1021/acs.jpcb.1c08056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
An optical control
of many working optoelectronic systems (real-time
sensors, optical modulators, light amplifiers, or phase retarders)
giving efficient optical gain or remote signal modulation is currently
included as scientifically and industrially interesting. In here,
an oxazolone derivative as the multifunctional organic system is given
in this contribution. The molecule possesses a stilbene group and
an oxazolone heteroatomic ring, which implies effective refractive
index manipulation and multimode lasing action, respectively. The
light modulation is repeatable and stable, also in the hundreds of
Hz regime. On the other hand, the amplified optical signal can be
easily generated by an external optical pumping source. Thus, signal
control is fully available, as is read-in and read-out of the information
in real time. Furthermore, this third-order, nonlinear, optical phenomenon
using a third harmonic generation technique was also observed. We
discovered that only by changing the energy and time regime of the
supplied optical signal is the optical or nonlinear optical response
observed. Two heteroenergetic molecular states (trans (E) and cis (Z)) can efficiently operate in modern multifunctional optoelectronic
systems, which can provide and generate an optical signal. Such functionalities
are commonly used in all-optical photonic switchers and logic gates
and can be utilized in optical-core networks and computers.
Collapse
Affiliation(s)
- Adam Szukalski
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Przemysław Krawczyk
- Nicolaus Copernicus University, Collegium Medicum, Faculty of Pharmacy, Kurpińskiego 5, 85-950 Bydgoszcz, Poland
| | - Bouchta Sahraoui
- Laboratoire MOLTECH-Anjou, Université d'Angers, UFR Sciences, UMR 6200, CNRS, 2 Bd. Lavoisier, 49045, Angers Cedex, France
| | - Beata Jędrzejewska
- Bydgoszcz University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
14
|
Fluorescent Orthopalladated Complexes of 4-Aryliden-5(4 H)-oxazolones from the Kaede Protein: Synthesis and Characterization. Molecules 2021; 26:molecules26051238. [PMID: 33669118 PMCID: PMC7956804 DOI: 10.3390/molecules26051238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
The goal of the work reported here was to amplify the fluorescent properties of 4-aryliden-5(4H)-oxazolones by suppression of the hula-twist non-radiative deactivation pathway. This aim was achieved by simultaneous bonding of a Pd center to the N atom of the heterocycle and the ortho carbon of the arylidene ring. Two different 4-((Z)-arylidene)-2-((E)-styryl)-5(4H)-oxazolones, the structures of which are closely related to the chromophore of the Kaede protein and substituted at the 2- and 4-positions of the arylidene ring (1a OMe; 1b F), were used as starting materials. Oxazolones 1a and 1b were reacted with Pd(OAc)2 to give the corresponding dinuclear orthometalated palladium derivates 2a and 2b by regioselective C–H activation of the ortho-position of the arylidene ring. Reaction of 2a (2b) with LiCl promoted the metathesis of the bridging carboxylate by chloride ligands to afford dinuclear 3a (3b). Mononuclear complexes containing the orthopalladated oxazolone and a variety of ancillary ligands (acetylacetonate (4a, 4b), hydroxyquinolinate (5a), aminoquinoline (6a), bipyridine (7a), phenanthroline (8a)) were prepared from 3a or 3b through metathesis of anionic ligands or substitution of neutral weakly bonded ligands. All species were fully characterized and the X-ray determination of the molecular structure of 7a was carried out. This structure has strongly distorted ligands due to intramolecular interactions. Fluorescence measurements showed an increase in the quantum yield (QY) by up to one order of magnitude on comparing the free oxazolone (QY < 1%) with the palladated oxazolone (QY = 12% for 6a). This fact shows that the coordination of the oxazolone to the palladium efficiently suppresses the hula-twist deactivation pathway.
Collapse
|
15
|
Baleeva NS, Smirnov AY, Myasnyanko IN, Baranov MS. Synthesis and Optical Properties of the Conformationally Locked Indole and Indoline Derivatives of the GFP Chromophore. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020050040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Krawczyk P, Bratkowska M, Wybranowski T, Hołyńska-Iwan I, Cysewski P, Jędrzejewska B. Experimental and theoretical insight into spectroscopic properties and bioactivity of 4-(4-formylbenzylidene)-2-phenyloxazol-5(4H)-one dye for future applications in biochemistry. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Sokolov AI, Myasnyanko IN, Baleeva NS, Baranov MS. Convenient and Versatile Synthetic Protocol for Arylidene‐1
H
‐imidazol‐5(4
H
)‐ones. ChemistrySelect 2020. [DOI: 10.1002/slct.202001782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anatolii I. Sokolov
- Institute of Bioorganic ChemistryRussian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Ivan N. Myasnyanko
- Institute of Bioorganic ChemistryRussian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Nadezhda S. Baleeva
- Institute of Bioorganic ChemistryRussian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic ChemistryRussian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
- Pirogov Russian National Russia Research Medical UniversityInstitute of Bioorganic ChemistryRussian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| |
Collapse
|
18
|
Zaitseva ER, Smirnov AY, Mishin AS, Baranov MS. Synthesis and Optical Properties of the New Acetylene Kaede Chromophore Analog. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020030231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Chen C, Fang C. Devising Efficient Red-Shifting Strategies for Bioimaging: A Generalizable Donor-Acceptor Fluorophore Prototype. Chem Asian J 2020; 15:1514-1523. [PMID: 32216076 DOI: 10.1002/asia.202000175] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/26/2020] [Indexed: 11/06/2022]
Abstract
Long emission wavelengths, high fluorescence quantum yields (FQYs), and large Stokes shifts are highly desirable features for fluorescent probes in biological imaging. However, the current development of many fluorescent probes remains largely trial-and-error and lacks efficiency. Moreover, to achieve far-red/near-infrared emission, a significant extension in the π -conjugation is usually adopted but accompanied by other drawbacks such as fluorescence loss. In this review, we discuss an effective red-shifting strategy built upon the green fluorescent protein chromophore, which enables a synergistic tuning of both the electronic ground and excited states. This approach could shorten the path toward redder emission in comparison to the conventional intramolecular charge transfer (ICT) strategy. We envision that this spectroscopy and computation-aided strategy may advance the noncanonical fluorescent protein design and be generalized to various fluorophore scaffolds for redder emission while preserving other superior properties such as high FQYs.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University 153 Gilbert Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
20
|
Synthesis of 2-arylideneimidazo[1,2-a]pyrazine-3,6,8(2H,5H,7H)-triones as a result of oxidation of 4-arylidene-2-methyl-1H-imidazol-5(4H)-ones with selenium dioxide. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02634-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Zaitseva SO, Zaitseva ER, Smirnov AY, Baleeva NS, Baranov MS. Synthesis and Optical Properties of the New Kaede Chromophore Analog. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Chen C, Zhu L, Baranov MS, Tang L, Baleeva NS, Smirnov AY, Yampolsky IV, Solntsev KM, Fang C. Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design. J Phys Chem B 2019; 123:3804-3821. [DOI: 10.1021/acs.jpcb.9b03201] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Ilia V. Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Kyril M. Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
23
|
Chen C, Baranov MS, Zhu L, Baleeva NS, Smirnov AY, Zaitseva SO, Yampolsky IV, Solntsev KM, Fang C. Designing redder and brighter fluorophores by synergistic tuning of ground and excited states. Chem Commun (Camb) 2019; 55:2537-2540. [PMID: 30742139 DOI: 10.1039/c8cc10007a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We strategically modified the GFP core via chemical synthesis to make redder and brighter biomimetic fluorophores. Based on quantum calculations, solvatochromism analysis, and femtosecond Raman, we unveiled the additive effect of tuning the electronic ground and excited states, respectively, to achieve a dramatic emission redshift with a "double-donor-one-acceptor" structure.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Baleeva NS, Zaitseva SO, Mineev KS, Khavroshechkina AV, Zagudaylova MB, Baranov MS. Enamine–azide [2+3]-cycloaddition as a method to introduce functional groups into fluorescent dyes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Schramm S, Weiß D. Fluorescent heterocycles: Recent trends and new developments. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Bozhanova NG, Baranov MS, Baleeva NS, Gavrikov AS, Mishin AS. Red-Shifted Aminated Derivatives of GFP Chromophore for Live-Cell Protein Labeling with Lipocalins. Int J Mol Sci 2018; 19:ijms19123778. [PMID: 30486502 PMCID: PMC6320917 DOI: 10.3390/ijms19123778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 11/16/2022] Open
Abstract
Fluorogens are an attractive type of dye for imaging applications, eliminating time-consuming washout steps from staining protocols. With just a handful of reported fluorogen-protein pairs, mostly in the green region of spectra, there is a need for the expansion of their spectral range. Still, the origins of solvatochromic and fluorogenic properties of the chromophores suitable for live-cell imaging are poorly understood. Here we report on the synthesis and labeling applications of novel red-shifted fluorogenic cell-permeable green fluorescent protein (GFP) chromophore analogs.
Collapse
Affiliation(s)
- Nina G Bozhanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
- Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia.
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Alexey S Gavrikov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Alexander S Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| |
Collapse
|
27
|
Collado S, Pueyo A, Baudequin C, Bischoff L, Jiménez AI, Cativiela C, Hoarau C, Urriolabeitia EP. Orthopalladation of GFP-Like Fluorophores Through C-H Bond Activation: Scope and Photophysical Properties. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sandra Collado
- INSA Rouen, CNRS, COBRA; Normandie Univ, UNIROUEN; 1 rue Tesnière 76821 Mont Saint Aignan France
| | - Alejandro Pueyo
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); CSIC-Universidad de Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Christine Baudequin
- INSA Rouen, CNRS, COBRA; Normandie Univ, UNIROUEN; 1 rue Tesnière 76821 Mont Saint Aignan France
| | - Laurent Bischoff
- INSA Rouen, CNRS, COBRA; Normandie Univ, UNIROUEN; 1 rue Tesnière 76821 Mont Saint Aignan France
| | - Ana Isabel Jiménez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); CSIC-Universidad de Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Carlos Cativiela
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); CSIC-Universidad de Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Christophe Hoarau
- INSA Rouen, CNRS, COBRA; Normandie Univ, UNIROUEN; 1 rue Tesnière 76821 Mont Saint Aignan France
| | - Esteban P. Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); CSIC-Universidad de Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
28
|
Zaitseva SO, Golodukhina SV, Baleeva NS, Levina EA, Smirnov AY, Zagudaylova MB, Baranov MS. Azidoacetic Acid Amides in the Synthesis of Substituted Arylidene‐1‐
H
‐imidazol‐5‐(4
H
)‐ones. ChemistrySelect 2018. [DOI: 10.1002/slct.201801349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Snizhana O. Zaitseva
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Svetlana V. Golodukhina
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Nadezhda S. Baleeva
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Evgenia A. Levina
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Marina B. Zagudaylova
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1 117997 Moscow Russia
| |
Collapse
|
29
|
Smirnov AY, Baleeva NS, Zaitseva SO, Mineev KS, Baranov MS. Derivatives of Azidocinnamic Acid in the Synthesis of 2-Amino-4-Arylidene-1H-Imidazol-5(4H)-Ones. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2318-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Ermakova YG, Sen T, Bogdanova YA, Smirnov AY, Baleeva NS, Krylov AI, Baranov MS. Pyridinium Analogues of Green Fluorescent Protein Chromophore: Fluorogenic Dyes with Large Solvent-Dependent Stokes Shift. J Phys Chem Lett 2018; 9:1958-1963. [PMID: 29589942 DOI: 10.1021/acs.jpclett.8b00512] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Novel fluorogenic dyes based on the GFP chromophore are developed. The compounds contain a pyridinium ring instead of phenolate and feature large Stokes shifts and solvent-dependent variations in the fluorescence quantum yield. Electronic structure calculations explain the trends in solvatochromic behavior in terms of the increase of the dipole moment upon excited-state relaxation in polar solvents associated with the changes in bonding pattern in the excited state. A unique combination of such optical characteristics and lipophilic properties enables using one of the new dyes for imaging the membrane structure of endoplasmic reticulum. An extremely high photostability (due to a dynamic exchange between the free and absorbed states) and selectivity make this compound a promising label for this type of cellular organelles.
Collapse
Affiliation(s)
- Yulia G Ermakova
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1 , 117997 Moscow , Russia
- European Molecular Biology Laboratory , 69117 Heidelberg , Germany
| | - Tirthendu Sen
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Yulia A Bogdanova
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
| | - Anna I Krylov
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1 , 117997 Moscow , Russia
| |
Collapse
|
31
|
Baleeva NS, Baranov MS. The Sonogashira reaction as a new method for the modification of borated analogues of the green fluorescence protein chromophore. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s106816201705003x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Baleeva NS, Zaitseva SO, Gorbachev DA, Smirnov AY, Zagudaylova MB, Baranov MS. The Role of N
-Substituents in Radiationless Deactivation of Aminated Derivatives of a Locked GFP Chromophore. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Snezhana O. Zaitseva
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Dmitriy A. Gorbachev
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Marina B. Zagudaylova
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| |
Collapse
|
33
|
Ikejiri M, Mori K, Miyagi R, Konishi R, Chihara Y, Miyashita K. A hybrid molecule of a GFP chromophore analogue and cholestene as a viscosity-dependent and cholesterol-responsive fluorescent sensor. Org Biomol Chem 2017; 15:6948-6958. [DOI: 10.1039/c7ob01522d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diarylmethylenated and cholestene-hybrid analogues of the GFP chromophore showed viscosity-dependent and cholesterol-responsive fluorescent properties.
Collapse
Affiliation(s)
| | - Kenta Mori
- Faculty of Pharmacy
- Osaka Ohtani University
- Tondabayashi
- Japan
| | - Rina Miyagi
- Faculty of Pharmacy
- Osaka Ohtani University
- Tondabayashi
- Japan
| | - Rino Konishi
- Faculty of Pharmacy
- Osaka Ohtani University
- Tondabayashi
- Japan
| | | | | |
Collapse
|
34
|
Lee B, Park BG, Cho W, Lee HY, Olasz A, Chen CH, Park SB, Lee D. BOIMPY: Fluorescent Boron Complexes with Tunable and Environment-Responsive Light-Emitting Properties. Chemistry 2016; 22:17321-17328. [DOI: 10.1002/chem.201603837] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Boran Lee
- Department of Chemistry; Seoul National University, 1 Gwanak-ro, Gwanak-gu; Seoul 08826 Korea
| | - Byung Gyu Park
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - Wansang Cho
- Department of Chemistry; Seoul National University, 1 Gwanak-ro, Gwanak-gu; Seoul 08826 Korea
| | - Ho Yong Lee
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - András Olasz
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - Chun-Hsing Chen
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - Seung Bum Park
- Department of Chemistry; Seoul National University, 1 Gwanak-ro, Gwanak-gu; Seoul 08826 Korea
| | - Dongwhan Lee
- Department of Chemistry; Seoul National University, 1 Gwanak-ro, Gwanak-gu; Seoul 08826 Korea
| |
Collapse
|
35
|
Baleeva NS, Tsarkova AS, Baranov MS. Conformationally locked chromophores of CFP and Sirius protein. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
36
|
Golodukhina SV, Baleeva NS, Mineyev KS, Baranov MS. Reversible condensation of 4-arylidene-1,2-dimethyl-1H-imidazol-5(4H)-ones with aromatic acyl chlorides. Chem Heterocycl Compd (N Y) 2015. [DOI: 10.1007/s10593-015-1802-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|