1
|
Khalid T, Malik A, Rasool N, Kanwal A, Nawaz H, Almas I. Cracking the code: the clinical and molecular impact of aminopyridines; a review (2019-2024). RSC Adv 2025; 15:688-711. [PMID: 39781020 PMCID: PMC11708541 DOI: 10.1039/d4ra07438f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Aminopyridines belong to a class of compounds that are monoamino and diamino derivatives of pyridine. They work primarily by blocking voltage-gated potassium channels in a dose-dependent manner. Essential heterocycles used extensively in synthetic, natural products, and medicinal chemistry are aminopyridine and its derivatives. A vast array of biological and pharmacological effects can result from the interaction of aminopyridine rings with different enzymes and receptors, due to their unique structural properties. Aminopyridine research is continually growing, and there are now greater expectations for how it may aid in the treatment of numerous disorders. This review article will serve as an innovative platform for researchers investigating aminopyridine compounds, intending thoroughly to examine both traditional and novel synthesis strategies in addition to investigating the various biological characteristics displayed by these adaptable heterocycles. We attempt to provide valuable insights that will contribute to further progress in the synthesis and utilization of aminopyridines in various fields.
Collapse
Affiliation(s)
- Tahira Khalid
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Ayesha Malik
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Hamna Nawaz
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Iffat Almas
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| |
Collapse
|
2
|
He J, Yokoi K, Wixted B, Zhang B, Kawamata Y, Renata H, Baran PS. Biocatalytic C-H oxidation meets radical cross-coupling: Simplifying complex piperidine synthesis. Science 2024; 386:1421-1427. [PMID: 39700271 DOI: 10.1126/science.adr9368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Modern medicinal chemists are targeting more complex molecules to address challenging biological targets, which leads to synthesizing structures with higher sp3 character (Fsp3) to enhance specificity as well as physiochemical properties. Although traditional flat, high-fraction sp2 molecules, such as pyridine, can be decorated through electrophilic aromatic substitution and palladium (Pd)-based cross-couplings, general strategies to derivatize three-dimensional (3D) saturated molecules are far less developed. In this work, we present an approach for the rapid, modular, enantiospecific, and diastereoselective functionalization of piperidine (saturated analog of pyridine), combining robust biocatalytic carbon-hydrogen oxidation with radical cross-coupling. This combination is directly analogous to electrophilic aromatic substitution followed by Pd-couplings for flat molecules, streamlining synthesis of 3D molecules. This study offers a generalizable strategy for accessing complex architectures, appealing to both medicinal and process chemists.
Collapse
Affiliation(s)
- Jiayan He
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Kenta Yokoi
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, USA
| | - Breanna Wixted
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, USA
| | - Benxiang Zhang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, USA
| |
Collapse
|
3
|
Ballesteros-Garrido R. Recent developments in the synthesis of 4-, 5-, 6- and 7-azaindoles. ADVANCES IN HETEROCYCLIC CHEMISTRY 2023. [DOI: 10.1016/bs.aihch.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Marques MMB, Royo B, Raydan D, Friães S, Viduedo N, Santos AS, Gomes C. Manganese-catalyzed Synthesis of Imines from Primary Alcohols and Aromatic Amines. Synlett 2022. [DOI: 10.1055/a-1828-1678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Herein, we describe the synthesis of a wide variety of imines through oxidative coupling of alcohols and (hetero)aromatic amines catalyzed by Mn complexes bearing N^N triazole ligands. A wide variety of imines in excellent yields (up to 99%) have been prepared. Mn-based catalysts proved to be highly efficient and versatile, allowing for the first time, the preparation of several imines containing N-based heterocycles.
Collapse
Affiliation(s)
- Maria M B Marques
- Chemistry, Universidade Nova de Lisboa Faculdade de Ciencias e Tecnologia, Caparica, Portugal
| | | | | | | | | | - Ana Sofia Santos
- Chemistry, Universidade Nova de Lisboa Faculdade de Ciencias e Tecnologia, Caparica, Portugal
| | | |
Collapse
|
5
|
Yiamsawat K, Gable KP, Chuawong P. Dissecting the Electronic Contribution to the Regioselectivity of the Larock Heteroannulation Reaction in the Oxidative Addition and Carbopalladation Steps. J Org Chem 2022; 87:1218-1229. [PMID: 34989564 DOI: 10.1021/acs.joc.1c02560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Substituted 2-iodoaniline derivatives were prepared and utilized as reactants, along with asymmetric diarylacetylenes, to synthesize a series of 6-substituted-2,3-diarylindole derivatives via the Larock heteroannulation reaction. Electron-donating substituents on the 2-iodoaniline derivatives retarded the reaction, while electron-withdrawing substituents provided a complete conversion to the indole products. In addition, the electronic properties of the substituted 2-iodoaniline reactants displayed no influence toward regioselectivity. On the contrary, the electronic effect from unsymmetrical diarylacetylenes significantly influenced the regiochemical outcome of the reaction. Density functional theory calculations of the oxidative addition and carbopalladation steps revealed the electronic influences of the substituted 2-iodoaniline derivatives toward the overall rate of the reaction. In contrast, the electronic properties of the asymmetric diarylacetylene remained the critical product-determining factor of regioselectivity.
Collapse
Affiliation(s)
- Kanyapat Yiamsawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Kevin P Gable
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| | - Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Govada GV, Sabbasani RR. A new outlook in oxidative transformations and coupling reactions via in situ generation of organic chloramines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Abstract
N-heterocycles, both saturated and unsaturated, are ubiquitous biologically active molecules that are extremely appealing scaffolds in drug discovery programs. Although classical synthetic methods have been developed to access many relevant N-heterocyclic scaffolds, representing well-established and reliable routes, some do not meet the needs of sustainability. In this context, several advances have been made towards the sustainable synthesis of N-heterocycles. This review focuses on the most recent examples from the last five years of catalytic synthesis of several heterocyclic compounds of medicinal relevance. Thus, the synthesis of isoindoloquinazolines, quinazolines and azaindoles, among others, are covered. The synthetic methods selected include the use of homogeneous and heterogeneous catalysts and the use of alternative and sustainable methods such as, for example, metal-catalyzed acceptorless coupling and one-pot reactions. The green aspects of the individual synthetic approaches are highlighted, and the scope of each methodology is described.
Collapse
|
8
|
Palladium-catalyzed highly regioselective Buchwald-Hartwig amination of 5-substituted-1,2,3-triiodobenzene: Facile synthesis of 2,3-diiodinated N-arylanilines as potential anti-inflammatory candidates. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Roslan II, Ng K, Alhooshani KR, Jaenicke S, Chuah G. In/Cu Catalyzed Multiple C−N/C−C Bond Formation via Multiple Bond Cleavage in a Three Component Synthesis of Arylimidazopyridine Carboxylates. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Irwan Iskandar Roslan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Kian‐Hong Ng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Khalid R. Alhooshani
- Chemistry Department King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Stephan Jaenicke
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Gaik‐Khuan Chuah
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
10
|
Motati DR, Amaradhi R, Ganesh T. Recent developments in the synthesis of azaindoles from pyridine and pyrrole building blocks. Org Chem Front 2021. [DOI: 10.1039/d0qo01079k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The azaindole framework is ubiquitous in bioactive natural products and pharmaceuticals. This review highlights the synthetic approaches to azaindoles with advantages and limitations, mechanistic pathways and biological importance.
Collapse
Affiliation(s)
- Damoder Reddy Motati
- Department of Pharmacology and Chemical Biology
- Emory School of Medicine
- Atlanta
- USA
| | - Radhika Amaradhi
- Department of Pharmacology and Chemical Biology
- Emory School of Medicine
- Atlanta
- USA
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology
- Emory School of Medicine
- Atlanta
- USA
| |
Collapse
|
11
|
Marques MMB, Santos AS. Pd-Catalyzed Functionalization of Aryl Amines on a Soluble Polymer Support. Synlett 2020. [DOI: 10.1055/s-0040-1707261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractHerein we report the use of a soluble polymer support PEG-2000 on Pd-catalyzed reactions to improve the functionalization of aromatic amines and the synthesis of N-heterocycles. Compatibility of metal-catalyzed reactions for assembling privileged structures such as functionalized anilines were studied. PEG-supported anilines were found to be suitable substrates for Pd-catalyzed N-arylation, Sonogashira and Heck reactions. PEGylated substrates were prepared in yields up to 94%. This work consists on a proof of concept on the use of PEGylated anilines on Pd-catalyzed cross-coupling reactions. Indole core was attained in 82% and 62% yields, via two different routes.
Collapse
|
12
|
Santos AS, Martins MM, Mortinho AC, Silva AM, Marques MMB. Exploring the reactivity of halogen-free aminopyridines in one-pot palladium-catalyzed C–N cross-coupling/C–H functionalization. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Hu J, Ji X, Hao S, Zhao M, Lai M, Ren T, Xi G, Wang E, Wang J, Wu Z. Regioselective C-H sulfenylation of N-sulfonyl protected 7-azaindoles promoted by TBAI: a rapid synthesis of 3-thio-7-azaindoles. RSC Adv 2020; 10:31819-31823. [PMID: 35518137 PMCID: PMC9056539 DOI: 10.1039/d0ra06635d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023] Open
Abstract
This paper describes the regioselective C-3 sulfenylation of N-sulfonyl protected 7-azaindoles with sulfonyl chlorides. In this transformation, dual roles of TBAI serving as both promoter and desulfonylation reagent have been demonstrated. The reaction proceeded smoothly under simple conditions to afford 3-thio-7-azaindoles in moderate to good yields with broad substrate scopes. This protocol refrains from using transition-metal catalysts, strong oxidants or bases, and shows its practical synthetic value in organic synthesis. A novel, practical and highly regioselective TBAI promoted C-3 sulfenylation reaction of N-sulfonyl protected 7-azaindoles with sulfonyl chlorides is presented here.![]()
Collapse
Affiliation(s)
- Jingyan Hu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University Zhengzhou 450002 China
| | - Xiaoming Ji
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University Zhengzhou 450002 China
| | - Shuai Hao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University Zhengzhou 450002 China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University Zhengzhou 450002 China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University Zhengzhou 450002 China
| | - Tianbao Ren
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University Zhengzhou 450002 China
| | - Gaolei Xi
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450000 China
| | - Erbin Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450000 China
| | - Juanjuan Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450000 China
| | - Zhiyong Wu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University Zhengzhou 450002 China
| |
Collapse
|
14
|
Affiliation(s)
- Zhixiang Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 354 Fenglin Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 354 Fenglin Lu, Shanghai 200032, China
| |
Collapse
|
15
|
Reen GK, Kumar A, Sharma P. Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage. Beilstein J Org Chem 2019; 15:1612-1704. [PMID: 31435443 PMCID: PMC6664406 DOI: 10.3762/bjoc.15.165] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
A comprehensive account of recent advances in the synthesis of imidazopyridines, assisted through transition-metal-catalyzed multicomponent reactions, C-H activation/functionalization and coupling reactions are highlighted in this review article. The basic illustration of this review comprises of schemes with concise account of explanatory text. The schemes depict the reaction conditions along with a quick look into the mechanism involved to render a deep understanding of the catalytic role. At some instances optimizations of certain features have been illustrated through tables, i.e., selectivity of catalyst, loading of the catalyst and percentage yield with different substrates. Each of the reported examples has been rigorously analyzed for reacting substrates, reaction conditions and transition metals used as the catalyst. This review will be helpful to the chemists in understanding the challenges associated with the reported methods as well as the future possibilities, both in the choice of substrates and catalysts. This review would be quite appealing to a wider range of organic chemists in academia and industrial R&D sectors working in the field of heterocyclic syntheses. In a nutshell, this review will be a guiding torch to envisage: (i) the role of various transition metals in the domain dedicated towards method development and (ii) for the modifications needed thereof in the R&D sector.
Collapse
Affiliation(s)
| | - Ashok Kumar
- School of Chemical Sciences, Devi Ahilya University, Indore, (M. P.), India
| | - Pratibha Sharma
- School of Chemical Sciences, Devi Ahilya University, Indore, (M. P.), India
| |
Collapse
|
16
|
Chen Z, Liang P, Xu F, Qiu R, Tan Q, Long L, Ye M. Lewis Acid-Catalyzed Intermolecular Annulation: Three-Component Reaction toward Imidazo[1,2- a]pyridine Thiones. J Org Chem 2019; 84:9369-9377. [PMID: 31274309 DOI: 10.1021/acs.joc.9b01188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Lewis acid-catalyzed three-component annulation reaction of 2-aminopyridines and ynals with elemental sulfur was established. A series of imidazo[1,2-a]pyridine thiones was obtained in moderate to excellent yields. The merits of this transformation include easily available starting materials, multiple C-heteroatom bond formation in one pot, good functional group tolerance, elemental sulfur as S source, operational simplicity, etc.
Collapse
Affiliation(s)
- Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Pei Liang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Fan Xu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Rulin Qiu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Qi Tan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Lipeng Long
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Min Ye
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou 341000 , P. R. China
| |
Collapse
|
17
|
Cu2O/Nano-CuFe2O4 as a Magnetically Recoverable Catalyst for Ligand-Free Synthesis of Imidazo[1,2-a] Pyridines and 3-Aroylimidazo[1,2-a] Pyridines. NATIONAL ACADEMY SCIENCE LETTERS 2019. [DOI: 10.1007/s40009-019-00795-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Tzani M, Kallitsakis MG, Symeonidis TS, Lykakis IN. Alumina-Supported Gold Nanoparticles as a Bifunctional Catalyst for the Synthesis of 2-Amino-3-arylimidazo[1,2- a]pyridines. ACS OMEGA 2018; 3:17947-17956. [PMID: 31458387 PMCID: PMC6643465 DOI: 10.1021/acsomega.8b03047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/06/2018] [Indexed: 05/31/2023]
Abstract
The bifunctional catalytic efficacy of alumina-supported gold nanoparticles (Au/Al2O3) was investigated for the synthesis of a series of 2-amino-3-aryl-imidazopyridines through the chemoselective reduction of the corresponding 2-nitro-3-aryl-imidazo[1,2-a]pyridines in high isolated yields. This highly efficient protocol was initially applied for the synthesis of 2-nitro-3-aryl imidazo[1,2-a]pyridines via the reaction between 2-aminopyridine and nitroalkenes catalyzed by the present catalytic system Au/Al2O3. Moreover, the heterogeneous surface γ-Al2O3 was also found to catalyze this pathway in a comparable manner. However, only Au/Al2O3 was further proved as the appropriate catalytic system for the selective transfer hydrogenation of the synthesized 2-nitro imidazopyridine derivatives into the corresponding 2-amino-3-aryl imidazo[1,2-a]pyridines using NaBH4 as a hydrogen-donor molecule. In addition, the one-pot two-step reaction between nitroalkenes and aminopyridines in the presence of Au/Al2O3-NaBH4 provided directly the fast and facile synthesis of 2-amino-3-aryl imidazopyridines, highlighting a useful synthetic application of the catalytic protocol.
Collapse
|
19
|
Mielcarek A, Wiśniewska A, Dołęga A. Unassisted formation of hemiaminal ether from 4-aminopyridine and o-vanillin - experimental and theoretical study. Struct Chem 2018. [DOI: 10.1007/s11224-018-1105-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
|
21
|
Lessing T, Müller TJJ. Activation-free one-pot alkynylation–cyclization synthesis of 2-substituted 4-azaindoles and indoles. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Purificação SI, Pires MJD, Rippel R, Santos AS, Marques MMB. One-Pot Synthesis of 1,2-Disubstituted 4-, 5-, 6-, and 7-Azaindoles from Amino-o-halopyridines via N-Arylation/Sonogashira/Cyclization Reaction. Org Lett 2017; 19:5118-5121. [DOI: 10.1021/acs.orglett.7b02403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sara I. Purificação
- LAQV@REQUIMTE, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Marina J. D. Pires
- LAQV@REQUIMTE, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Rafael Rippel
- LAQV@REQUIMTE, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - A. Sofia Santos
- LAQV@REQUIMTE, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - M. Manuel B. Marques
- LAQV@REQUIMTE, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
23
|
Duret G, Le Fouler V, Bisseret P, Bizet V, Blanchard N. Diels-Alder and Formal Diels-Alder Cycloaddition Reactions of Ynamines and Ynamides. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700986] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guillaume Duret
- CNRS, LCM UMR 7509; Université de Strasbourg; 67000 Strasbourg France
| | - Vincent Le Fouler
- CNRS, LCM UMR 7509; Université de Strasbourg; 67000 Strasbourg France
| | - Philippe Bisseret
- CNRS, LCM UMR 7509; Université de Strasbourg; 67000 Strasbourg France
| | - Vincent Bizet
- CNRS, LCM UMR 7509; Université de Strasbourg; 67000 Strasbourg France
| | - Nicolas Blanchard
- CNRS, LCM UMR 7509; Université de Strasbourg; 67000 Strasbourg France
| |
Collapse
|
24
|
Dwivedi V, Kumar R, Sharma K, Sridhar B, Reddy MS. Copper-Promoted Regioselective Intermolecular Diamination of Ynamides: Synthesis of Imidazo[1,2- a]pyridines. ACS OMEGA 2017; 2:2770-2777. [PMID: 31457615 PMCID: PMC6641143 DOI: 10.1021/acsomega.7b00426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/05/2017] [Indexed: 06/10/2023]
Abstract
A facile access to 3-heterosubstituted (3-oxazolidinonyl/indolyl/phenoxy) imidazo[1,2-a]pyridines from readily available 2-aminopyridines and electron-rich (internally activated) alkynes like ynamides/ynamines/ynol ethers is achieved via Cu(OTf)2-mediated intermolecular diamination under aerobic conditions. The reaction is highly regioselective, owing to internal electron bias, and thus led to a single regioisomer with heterosubstitution at C3.
Collapse
Affiliation(s)
- Vikas Dwivedi
- Medicinal
& Process Chemistry Division, CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Ravi Kumar
- Medicinal
& Process Chemistry Division, CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extn, Sitapur Road, Lucknow 226031, India
- Academy
of Scientific and Innovative Research, New Delhi 110001, India
| | - Kavita Sharma
- National
Institute of Pharmaceutical Education and Research, Raebareli 229010, India
| | - Balasubramanian Sridhar
- X-Ray Crystallography Division and MCB Division, CSIR-IICT, Tarnaka, Hyderabad 500007, India
| | - Maddi Sridhar Reddy
- Medicinal
& Process Chemistry Division, CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extn, Sitapur Road, Lucknow 226031, India
- X-Ray Crystallography Division and MCB Division, CSIR-IICT, Tarnaka, Hyderabad 500007, India
| |
Collapse
|
25
|
Duret G, Quinlan R, Yin B, Martin RE, Bisseret P, Neuburger M, Gandon V, Blanchard N. Intramolecular Inverse Electron-Demand [4 + 2] Cycloadditions of Ynamides with Pyrimidines: Scope and Density Functional Theory Insights. J Org Chem 2017; 82:1726-1742. [PMID: 28059511 DOI: 10.1021/acs.joc.6b02986] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
4-Aminopyridines are valuable scaffolds for the chemical industry in general, from life sciences to catalysis. We report herein a collection of structurally diverse polycyclic fused and spiro-4-aminopyridines that are prepared in only three steps from commercially available pyrimidines. The key step of this short sequence is a [4 + 2]/retro-[4 + 2] cycloaddition between a pyrimidine and an ynamide, which constitutes the first examples of ynamides behaving as electron-rich dienophiles in [4 + 2] cycloaddition reactions. In addition, running the ihDA/rDA reaction in continuous mode in superheated toluene, to overcome the limited scalability of MW reactions, results in a notable production increase compared to batch mode. Finally, density functional theory investigations shed light on the energetic and geometric requirements of the different steps of the ihDA/rDA sequence.
Collapse
Affiliation(s)
- Guillaume Duret
- Laboratoire de Chimie Moléculaire UMR 7509, Université de Strasbourg, CNRS , Strasbourg F-67000, France
| | - Robert Quinlan
- Laboratoire de Chimie Moléculaire UMR 7509, Université de Strasbourg, CNRS , Strasbourg F-67000, France
| | - Boyang Yin
- Laboratoire de Chimie Moléculaire UMR 7509, Université de Strasbourg, CNRS , Strasbourg F-67000, France
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd. , Grenzacherstrasse 124, Basel CH-4070, Switzerland
| | - Philippe Bisseret
- Laboratoire de Chimie Moléculaire UMR 7509, Université de Strasbourg, CNRS , Strasbourg F-67000, France
| | - Markus Neuburger
- Department of Chemistry, University of Basel , Spitalstrasse 51, Basel CH-4056, Switzerland
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay , bâtiment 420, Orsay cedex 91405, France.,Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1 av. de la Terrasse, Gif-sur-Yvette 91198, France
| | - Nicolas Blanchard
- Laboratoire de Chimie Moléculaire UMR 7509, Université de Strasbourg, CNRS , Strasbourg F-67000, France
| |
Collapse
|
26
|
Silver-catalyzed highly efficient synthesis of pyrido[1,2- a ]pyrimidin-4-ones from 2-aminopyridines and alkynoates. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.11.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Stankevičiūtė J, Vaitekūnas J, Petkevičius V, Gasparavičiūtė R, Tauraitė D, Meškys R. Oxyfunctionalization of pyridine derivatives using whole cells of Burkholderia sp. MAK1. Sci Rep 2016; 6:39129. [PMID: 27982075 PMCID: PMC5159870 DOI: 10.1038/srep39129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022] Open
Abstract
Pyridinols and pyridinamines are important intermediates with many applications in chemical industry. The pyridine derivatives are in great demand as synthons for pharmaceutical products. Moreover, pyridines are used either as biologically active substances or as building blocks for polymers with unique physical properties. Application of enzymes or whole cells is an attractive strategy for preparation of hydroxylated pyridines since the methods for chemical synthesis of pyridinols, particularly aminopyridinols, are usually limited or inefficient. Burkholderia sp. MAK1 (DSM102049), capable of using pyridin-2-ol as the sole carbon and energy source, was isolated from soil. Whole cells of Burkholderia sp. MAK1 were confirmed to possess a good ability to convert different pyridin-2-amines and pyridin-2-ones into their 5-hydroxy derivatives. Moreover, several methylpyridines as well as methylated pyrazines were converted to appropriate N-oxides. In conclusion, regioselective oxyfunctionalization of pyridine derivatives using whole cells of Burkholderia sp. MAK1 is a promising method for the preparation of various pyridin-5-ols and pyridin-N-oxides.
Collapse
Affiliation(s)
- Jonita Stankevičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, the Life Sciences Centre, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, the Life Sciences Centre, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Vytautas Petkevičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, the Life Sciences Centre, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Renata Gasparavičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, the Life Sciences Centre, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Daiva Tauraitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, the Life Sciences Centre, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, the Life Sciences Centre, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
28
|
Pires MJD, Poeira DL, Purificação SI, Marques MMB. Synthesis of Substituted 4-, 5-, 6-, and 7-Azaindoles from Aminopyridines via a Cascade C–N Cross-Coupling/Heck Reaction. Org Lett 2016; 18:3250-3. [DOI: 10.1021/acs.orglett.6b01500] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marina J. D. Pires
- LAQV@REQUIMTE, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Diogo L. Poeira
- LAQV@REQUIMTE, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Sara I. Purificação
- LAQV@REQUIMTE, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - M. Manuel B. Marques
- LAQV@REQUIMTE, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
29
|
Aziz J, Baladi T, Piguel S. Direct Alkynylation of 3H-Imidazo[4,5-b]pyridines Using gem-Dibromoalkenes as Alkynes Source. J Org Chem 2016; 81:4122-33. [DOI: 10.1021/acs.joc.6b00406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jessy Aziz
- Institut
Curie, PSL Research University, CNRS, INSERM, UMR9187-U1196, F-91405, Orsay, France
| | - Tom Baladi
- Institut
Curie, PSL Research University, CNRS, INSERM, UMR9187-U1196, F-91405, Orsay, France
| | - Sandrine Piguel
- Institut
Curie, Université Paris Sud, Université Paris-Saclay, F-91405, Orsay, France
| |
Collapse
|
30
|
Duret G, Quinlan R, Martin RE, Bisseret P, Neuburger M, Gandon V, Blanchard N. Inverse Electron-Demand [4 + 2]-Cycloadditions of Ynamides: Access to Novel Pyridine Scaffolds. Org Lett 2016; 18:1610-3. [PMID: 26998920 DOI: 10.1021/acs.orglett.6b00464] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Functionalized polycyclic aminopyridines are central to the chemical sciences, but their syntheses are still hampered by a number of shortcomings. These nitrogenated heterocycles can be efficiently prepared by an intramolecular inverse electron demand hetero Diels-Alder (ihDA) cycloaddition of ynamides to pyrimidines. This ihDA/rDA sequence is general in scope and affords expedient access to novel types of aminopyridinyl scaffolds that hold great promise in terms of exit vector patterns.
Collapse
Affiliation(s)
- Guillaume Duret
- Laboratoire de Chimie Moléculaire, Université de Strasbourg , CNRS UMR 7509, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Robert Quinlan
- Laboratoire de Chimie Moléculaire, Université de Strasbourg , CNRS UMR 7509, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Philippe Bisseret
- Laboratoire de Chimie Moléculaire, Université de Strasbourg , CNRS UMR 7509, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Markus Neuburger
- Department of Chemistry, University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université. Paris-Sud, Université Paris-Saclay , bâtiment 420, 91405 Orsay cedex, France.,Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay , 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Nicolas Blanchard
- Laboratoire de Chimie Moléculaire, Université de Strasbourg , CNRS UMR 7509, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
31
|
Chen Z, Wen Y, Luo G, Ye M, Wang Q. Transition-metal-free C–C bond cleavage and formation: efficient synthesis of 2,3-diarylimidazo[1,2-α]pyridines from 2-aminopyridines and alkynoates. RSC Adv 2016. [DOI: 10.1039/c6ra19291b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A highly efficient transition-metal-free cyclization reaction for the synthesis of 2,3-diarylimidazo[1,2-α]pyridines is described.
Collapse
Affiliation(s)
- Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou
- China
| | - Yuelu Wen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou
- China
| | - Guotian Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou
- China
| | - Min Ye
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou
- China
| | - Qinghao Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou
- China
| |
Collapse
|
32
|
Tazeem T, Han X, Zhou Q, Wei J, Tien P, Yang G, Wu S, Dong C. A facile one-pot multi-component synthesis of novel adamantine substituted imidazo[1,2-a]pyridine derivatives: identification and structure–activity relationship study of their anti-HIV-1 activity. RSC Adv 2016. [DOI: 10.1039/c6ra17656a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A series of adamantine substituted imidazo[1,2-a]pyridine derivatives were developed through a one-pot multi-component Groebke–Blackburn–Bienaymé reaction, among them several compounds were identified to be the potent inhibitors against HIV-1 cells.
Collapse
Affiliation(s)
- Tazeem Tazeem
- State Key Laboratory of Virology
- College of Life Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Xin Han
- State Key Laboratory of Virology
- College of Life Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Qingjun Zhou
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Jingchen Wei
- Department of Pharmacology
- Guilin Medical University
- Guilin
- China
| | - Po Tien
- State Key Laboratory of Virology
- College of Life Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Guichun Yang
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Shuwen Wu
- State Key Laboratory of Virology
- College of Life Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Chune Dong
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals
- Wuhan University School of Pharmaceutical Sciences
- Wuhan 430071
- China
| |
Collapse
|