1
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
2
|
Li W, Zhang C, Zhang HE, Dong R, Liu JY, Wang CM, Wang M, Wang YW, Wang C, Zhang Y, Shi L, Xu Y, Sun LP. Design, synthesis, and anticancer evaluation of ammosamide B with pyrroloquinoline derivatives as novel BRD4 inhibitors. Bioorg Chem 2022; 127:105917. [PMID: 35738217 DOI: 10.1016/j.bioorg.2022.105917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Bromodomain-containing protein 4 (BRD4), which is a member of the bromodomain and extra-terminal domain (BET) family, plays an important role in the regulation of gene expression as the "reader" of epigenetic regulation. BRD4 has become a promising target to treat cancer, because the up-regulation of BRD4 expression is closely associated with the occurrence and development of various cancers. At present, several BRD4 inhibitors are in clinical trials for cancer therapy, but no BRD4 inhibitors are on the market. Here, we designed and synthesized a series of compounds bearing pyrrolo[4,3,2-de]quinolin-2(1H)-one scaffold through structural modification of natural products ammosamide B, which is a natural pyrroloquinoline derivative reported for its potential antitumor activity. All target compounds were evaluated for their BRD4 BD1 inhibition activities via the protein thermal shift assays or AlphaSceen assay. The representative compound 49 showed potent activity (IC50 = 120 nM). The co-crystal of compound 49 with BRD4 BD1 was solved to study the structure activity relationship, which showed that 49 could combine with the acetyl lysine binding site and formed a hydrogen bond with the conserved residue Asn140. The results demonstrate that compound 49 is worthy of further investigation as a promising BRD4 inhibitor.
Collapse
Affiliation(s)
- Wen Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Hong-En Zhang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ru Dong
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jing-Ying Liu
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chun-Meng Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Min Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yu-Wei Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chao Wang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Lei Shi
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China.
| | - Li-Ping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
3
|
Demeritte A, Wuest WM. A look around the West Indies: The spices of life are secondary metabolites. Bioorg Med Chem 2020; 28:115792. [PMID: 33038665 PMCID: PMC7528826 DOI: 10.1016/j.bmc.2020.115792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Natural products possess a wide range of bioactivities with potential for therapeutic usage. While the distribution of these molecules can vary greatly there is some correlation that exists between the biodiversity of an environment and the uniqueness and concentration of natural products found in that region or area. The Caribbean and pan-Caribbean area is home to thousands of species of endemic fauna and flora providing huge potential for natural product discovery and by way, potential leads for drug development. This can especially be said for marine natural products as many of are rapidly diluted through diffusion once released and therefore are highly potent to achieve long reaching effects. This review seeks to highlight a small selection of marine natural products from the Caribbean region which possess antiproliferative, anti-inflammatory and antipathogenic properties while highlighting any synthetic efforts towards bioactive analogs.
Collapse
Affiliation(s)
- Adrian Demeritte
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | - William M Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Jiang F, Hu Q, Zhang Z, Li H, Li H, Zhang D, Li H, Ma Y, Xu J, Chen H, Cui Y, Zhi Y, Zhang Y, Xu J, Zhu J, Lu T, Chen Y. Discovery of Benzo[cd]indol-2(1H)-ones and Pyrrolo[4,3,2-de]quinolin-2(1H)-ones as Bromodomain and Extra-Terminal Domain (BET) Inhibitors with Selectivity for the First Bromodomain with Potential High Efficiency against Acute Gouty Arthritis. J Med Chem 2019; 62:11080-11107. [DOI: 10.1021/acs.jmedchem.9b01010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fei Jiang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Qinghua Hu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Zhimin Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Huili Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Dewei Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Hanwen Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yu Ma
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Jingjing Xu
- School of Medicine and Life Sciences, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haifang Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yong Cui
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yanle Zhi
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yanmin Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Junyu Xu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Jiapeng Zhu
- School of Medicine and Life Sciences, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| |
Collapse
|
6
|
Yang C, Chen X, Tang T, He Z. Annulation Reaction of 3-Acylmethylidene Oxindoles with Huisgen Zwitterions and Its Applications in the Syntheses of Pyrrolo[4,3,2-de]quinolinones and Marine Alkaloids Ammosamides. Org Lett 2016; 18:1486-9. [DOI: 10.1021/acs.orglett.6b00456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Changjiang Yang
- The State
Key Laboratory
of Elemento-Organic Chemistry and Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Xiangyu Chen
- The State
Key Laboratory
of Elemento-Organic Chemistry and Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Tong Tang
- The State
Key Laboratory
of Elemento-Organic Chemistry and Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Zhengjie He
- The State
Key Laboratory
of Elemento-Organic Chemistry and Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|