1
|
Iacobucci I, Monaco V, Hovasse A, Dupouy B, Keumoe R, Cichocki B, Elhabiri M, Meunier B, Strub JM, Monti M, Cianférani S, Blandin SA, Schaeffer-Reiss C, Davioud-Charvet E. Proteomic Profiling of Antimalarial Plasmodione Using 3-Benz(o)ylmenadione Affinity-Based Probes. Chembiochem 2024; 25:e202400187. [PMID: 38639212 DOI: 10.1002/cbic.202400187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Understanding the mechanisms of drug action in malarial parasites is crucial for the development of new drugs to combat infection and to counteract drug resistance. Proteomics is a widely used approach to study host-pathogen systems and to identify drug protein targets. Plasmodione is an antiplasmodial early-lead drug exerting potent activities against young asexual and sexual blood stages in vitro with low toxicity to host cells. To elucidate its molecular mechanisms, an affinity-based protein profiling (AfBPP) approach was applied to yeast and P. falciparum proteomes. New (pro-) AfBPP probes based on the 3-benz(o)yl-6-fluoro-menadione scaffold were synthesized. With optimized conditions of both photoaffinity labeling and click reaction steps, the AfBPP protocol was then applied to a yeast proteome, yielding 11 putative drug-protein targets. Among these, we found four proteins associated with oxidoreductase activities, the hypothesized type of targets for plasmodione and its metabolites, and other proteins associated with the mitochondria. In Plasmodium parasites, the MS analysis revealed 44 potential plasmodione targets that need to be validated in further studies. Finally, the localization of a 3-benzyl-6-fluoromenadione AfBPP probe was studied in the subcellular structures of the parasite at the trophozoite stage.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant' Angelo, Via Cintia 26, I-80126, Napoli, Italy
| | - Vittoria Monaco
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant' Angelo, Via Cintia 26, I-80126, Napoli, Italy
| | - Agnès Hovasse
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
| | - Baptiste Dupouy
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
| | - Rodrigue Keumoe
- Institut de Biologie Moléculaire et Cellulaire, INSERM U1257 - CNRS UPR9022 - Université de Strasbourg, 2, Allée Konrad Roentgen, -67084, Strasbourg, France
| | - Bogdan Cichocki
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
| | - Mourad Elhabiri
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette Cedex, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant' Angelo, Via Cintia 26, I-80126, Napoli, Italy
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
| | - Stéphanie A Blandin
- Institut de Biologie Moléculaire et Cellulaire, INSERM U1257 - CNRS UPR9022 - Université de Strasbourg, 2, Allée Konrad Roentgen, -67084, Strasbourg, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
| | - Elisabeth Davioud-Charvet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
| |
Collapse
|
2
|
Trometer N, Pecourneau J, Feng L, Navarro-Huerta JA, Lazarin-Bidóia D, de Oliveira Silva Lautenschlager S, Maes L, Fortes Francisco A, Kelly JM, Meunier B, Cal M, Mäser P, Kaiser M, Davioud-Charvet E. Synthesis and Anti-Chagas Activity Profile of a Redox-Active Lead 3-Benzylmenadione Revealed by High-Content Imaging. ACS Infect Dis 2024; 10:1808-1838. [PMID: 38606978 DOI: 10.1021/acsinfecdis.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Chagas disease, or American trypanosomiasis, is a neglected tropical disease which is a top priority target of the World Health Organization. The disease, endemic mainly in Latin America, is caused by the protozoan Trypanosoma cruzi and has spread around the globe due to human migration. There are multiple transmission routes, including vectorial, congenital, oral, and iatrogenic. Less than 1% of patients have access to treatment, relying on two old redox-active drugs that show poor pharmacokinetics and severe adverse effects. Hence, the priorities for the next steps of R&D include (i) the discovery of novel drugs/chemical classes, (ii) filling the pipeline with drug candidates that have new mechanisms of action, and (iii) the pressing need for more research and access to new chemical entities. In the present work, we first identified a hit (4a) with a potent anti-T. cruzi activity from a library of 3-benzylmenadiones. We then designed a synthetic strategy to build a library of 49 3-(4-monoamino)benzylmenadione derivatives via reductive amination to obtain diazacyclic benz(o)ylmenadiones. Among them, we identified by high content imaging an anti-amastigote "early lead" 11b (henceforth called cruzidione) revealing optimized pharmacokinetic properties and enhanced specificity. Studies in a yeast model revealed that a cruzidione metabolite, the 3-benzoylmenadione (cruzidione oxide), enters redox cycling with the NADH-dehydrogenase, generating reactive oxygen species, as hypothesized for the early hit (4a).
Collapse
Affiliation(s)
- Nathan Trometer
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - Jérémy Pecourneau
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - Liwen Feng
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - José A Navarro-Huerta
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - Danielle Lazarin-Bidóia
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, CEP 87020-900 Paraná, Brazil
| | - Sueli de Oliveira Silva Lautenschlager
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, CEP 87020-900 Paraná, Brazil
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, CDE-S7.27 Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France
| | - Monica Cal
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Elisabeth Davioud-Charvet
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| |
Collapse
|
3
|
Trometer N, Roignant M, Davioud-Charvet E. Efficient Multigram-Scale Synthesis of 7-Substituted 3-Methyltetral-1-ones and 6-Fluoromenadione. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nathan Trometer
- Laboratoire dʼInnovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), UMR7042 Université de Strasbourg−CNRS−UHA, 25 Rue Becquerel, Strasbourg 67087, France
| | - Matthieu Roignant
- Laboratoire dʼInnovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), UMR7042 Université de Strasbourg−CNRS−UHA, 25 Rue Becquerel, Strasbourg 67087, France
| | - Elisabeth Davioud-Charvet
- Laboratoire dʼInnovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), UMR7042 Université de Strasbourg−CNRS−UHA, 25 Rue Becquerel, Strasbourg 67087, France
| |
Collapse
|
4
|
Donzel M, Elhabiri M, Davioud-Charvet E. Bioinspired Photoredox Benzylation of Quinones. J Org Chem 2021; 86:10055-10066. [PMID: 34264092 DOI: 10.1021/acs.joc.1c00814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
3-Benzylmenadiones were obtained in good yield by using a blue-light-induced photoredox process in the presence of Fe(III), oxygen, and γ-terpinene acting as a hydrogen-atom transfer agent. This methodology is compatible with a wide variety of diversely substituted 1,4-naphthoquinones as well as various cheap, readily available benzyl bromides with excellent functional group tolerance. The benzylation mechanism was investigated and supports a three-step radical cascade with the key involvement of the photogenerated superoxide anion radical.
Collapse
Affiliation(s)
- Maxime Donzel
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), Université de Strasbourg-CNRS-UHA UMR7042, 25 Rue Becquerel, Strasbourg 67087, France
| | - Mourad Elhabiri
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), Université de Strasbourg-CNRS-UHA UMR7042, 25 Rue Becquerel, Strasbourg 67087, France
| | - Elisabeth Davioud-Charvet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), Université de Strasbourg-CNRS-UHA UMR7042, 25 Rue Becquerel, Strasbourg 67087, France
| |
Collapse
|
5
|
Rizos SR, Peitsinis ZV, Koumbis AE. Total Synthesis of Enantiopure Chabrolonaphthoquinone B Via a Stereoselective Julia-Kocienski Olefination. J Org Chem 2021; 86:10440-10454. [PMID: 34247481 DOI: 10.1021/acs.joc.1c01106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The total synthesis of cytotoxic meroditerpenoid naphthoquinone derivative chabrolonaphthoquinone B (1) in an enantiospecific manner is divulged using a chiral pool approach. The key step of our synthetic route is a modified Julia olefination between a sulfone-bearing aliphatic fragment and a Diels-Alder-derived aromatic aldehyde, leading to the stereoselective construction of the E-trisubstituted double bond.
Collapse
Affiliation(s)
- Stergios R Rizos
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Zisis V Peitsinis
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Alexandros E Koumbis
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
6
|
Donzel M, Karabiyikli D, Cotos L, Elhabiri M, Davioud‐Charvet E. Direct C−H Radical Alkylation of 1,4‐Quinones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Maxime Donzel
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Deniz Karabiyikli
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Leandro Cotos
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Mourad Elhabiri
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Elisabeth Davioud‐Charvet
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| |
Collapse
|
7
|
Ourhzif EM, Decombat C, Abrunhosa-Thomas I, Delort L, Khouili M, Akssira M, Caldefie-Chezet F, Chalard P, Troin Y. Synthesis and Biological Evaluation of New Naphthoquinones Derivatives. Curr Org Synth 2020; 17:224-229. [DOI: 10.2174/1570179417666200212111956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/31/2023]
Abstract
:
New substituted 1,4-naphthoquinones have been prepared in good overall yields through the
naphthol route. The cytotoxicity of these compounds was tested in vitro on MCF-7 breast tumor cells. The
most active compound 14 displayed an IC50 of 15μM.
Objective:
To investigate the cytotoxicity of new naphthoquinones derivatives on MCF-7 cells.
Methods:
Synthesis of new naphtoquinones derivatives and in vitro evaluation of their cytotoxicity on MCF-7
cells (rezasurin cell-based assay).
Results:
Starting from Ethyl 4-hydroxy-6,7-dimethoxy-2-naphthoate, four naphthoquinones were prepared and
exhibited substantial cytotoxicity against MCF-7 cells.
Conclusion:
Preliminary studies of the structure-activity relationship have shown the influence of the structural
parameters and, in particular, the nature of the naphthoquinone side chain.
Collapse
Affiliation(s)
- El-Mahdi Ourhzif
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Caroline Decombat
- Universite Clermont Auvergne, INRA, Unite de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | | | - Laetitia Delort
- Universite Clermont Auvergne, INRA, Unite de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Mostafa Khouili
- Universite Sultan Moulay Slimane, FST, Laboratoire de Chimie Organique et Analytique, BP 523 Beni-Mellal, Morocco
| | - Mohamed Akssira
- Universite Hassan II Casablanca, FST, Laboratoire de Chimie Physique et Chimie Bio organique BP 146,28800 Mohammedia, Morocco
| | - Florence Caldefie-Chezet
- Universite Clermont Auvergne, INRA, Unite de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Pierre Chalard
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Yves Troin
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Cotos L, Donzel M, Elhabiri M, Davioud‐Charvet E. A Mild and Versatile Friedel–Crafts Methodology for the Diversity‐Oriented Synthesis of Redox‐Active 3‐Benzoylmenadiones with Tunable Redox Potentials. Chemistry 2020; 26:3314-3325. [DOI: 10.1002/chem.201904220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/04/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Leandro Cotos
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)UMR7042 CNRS-Unistra-UHAEuropean School of Chemistry, Polymers and Materials (ECPM) 25, rue Becquerel 67087 Strasbourg France
| | - Maxime Donzel
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)UMR7042 CNRS-Unistra-UHAEuropean School of Chemistry, Polymers and Materials (ECPM) 25, rue Becquerel 67087 Strasbourg France
| | - Mourad Elhabiri
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)UMR7042 CNRS-Unistra-UHAEuropean School of Chemistry, Polymers and Materials (ECPM) 25, rue Becquerel 67087 Strasbourg France
| | - Elisabeth Davioud‐Charvet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)UMR7042 CNRS-Unistra-UHAEuropean School of Chemistry, Polymers and Materials (ECPM) 25, rue Becquerel 67087 Strasbourg France
| |
Collapse
|
9
|
|
10
|
Chen W, Guo R, Yang Z, Gong J. Formal Total Synthesis of Hybocarpone Enabled by Visible-Light-Promoted Benzannulation. J Org Chem 2018; 83:15524-15532. [PMID: 30484314 DOI: 10.1021/acs.joc.8b02595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formal total synthesis of hybocarpone was achieved in eight steps from commercially available 1,2,4-trimethoxybenzene. Key transformations include a visible-light-promoted benzannulation to construct the key α-naphthol intermediate and a modified CAN-mediated dimerization/hydration cascade sequence to generate the vicinal all-carbon quaternary centers in a stereocontrolled manner. The total synthesis of boryquinone was also achieved in seven steps.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Renyu Guo
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China
| | - Jianxian Gong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| |
Collapse
|
11
|
Alferova VA, Novikov RA, Bychkova OP, Rogozhin EA, Shuvalov MV, Prokhorenko IA, Sadykova VS, Kulko AB, Dezhenkova LG, Stepashkina EA, Efremov MA, Sineva ON, Kudryakova GK, Peregudov AS, Solyev PN, Tkachev YV, Fedorova GB, Terekhova LP, Tyurin AP, Trenin AS, Korshun VA. Astolides A and B, antifungal and cytotoxic naphthoquinone-derived polyol macrolactones from Streptomyces hygroscopicus. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Highly Efficient Synthesis and Structure-Activity Relationships of a Small Library of Substituted 1,4-Naphthoquinones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Quinonoid compounds via reactions of lawsone and 2-aminonaphthoquinone with α-bromonitroalkenes and nitroallylic acetates: Structural diversity by C-ring modification and cytotoxic evaluation against cancer cells. Eur J Med Chem 2018; 151:686-704. [DOI: 10.1016/j.ejmech.2018.03.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022]
|
14
|
Feng L, Lanfranchi DA, Cotos L, Cesar-Rodo E, Ehrhardt K, Goetz AA, Zimmermann H, Fenaille F, Blandin SA, Davioud-Charvet E. Synthesis of plasmodione metabolites and13C-enriched plasmodione as chemical tools for drug metabolism investigation. Org Biomol Chem 2018. [DOI: 10.1039/c8ob00227d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A 10-step synthesis of the antimalarial lead,13C18-enriched plasmodione, and of seven putative metabolites is described.
Collapse
|
15
|
Siciliano G, Santha Kumar TR, Bona R, Camarda G, Calabretta MM, Cevenini L, Davioud-Charvet E, Becker K, Cara A, Fidock DA, Alano P. A high susceptibility to redox imbalance of the transmissible stages of Plasmodium falciparum revealed with a luciferase-based mature gametocyte assay. Mol Microbiol 2017; 104:306-318. [PMID: 28118506 DOI: 10.1111/mmi.13626] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
Abstract
The goal to prevent Plasmodium falciparum transmission from humans to mosquitoes requires the identification of targetable metabolic processes in the mature (stage V) gametocytes, the sexual stages circulating in the bloodstream. This task is complicated by the apparently low metabolism of these cells, which renders them refractory to most antimalarial inhibitors and constrains the development of specific and sensitive cell-based assays. Here, we identify and functionally characterize the regulatory regions of the P. falciparum gene PF3D7_1234700, encoding a CPW-WPC protein and named here Upregulated in Late Gametocytes (ULG8), which we have leveraged to express reporter genes in mature male and female gametocytes. Using transgenic parasites containing a pfULG8-luciferase cassette, we investigated the susceptibility of stage V gametocytes to compounds specifically affecting redox metabolism. Our results reveal a high sensitivity of mature gametocytes to the glutathione reductase inhibitor and redox cycler drug methylene blue (MB). Using isobologram analysis, we find that a concomitant inhibition of the parasite enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase, a key component of NADPH synthesis, potently synergizes MB activity. These data suggest that redox metabolism and detoxification activity play an unsuspected yet vital role in stage V gametocytes, rendering these cells exquisitely sensitive to decreases in NADPH concentration.
Collapse
Affiliation(s)
- Giulia Siciliano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Roberta Bona
- Dipartimento Farmaco, Istituto Superiore di Sanità, Rome, Italy
| | - Grazia Camarda
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | | | - Luca Cevenini
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Elisabeth Davioud-Charvet
- European School of Chemistry, Polymers and Materials (ECPM), UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Andrea Cara
- Dipartimento Farmaco, Istituto Superiore di Sanità, Rome, Italy
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
Pharmacomodulation of the Antimalarial Plasmodione: Synthesis of Biaryl- and N-Arylalkylamine Analogues, Antimalarial Activities and Physicochemical Properties. Molecules 2017; 22:molecules22010161. [PMID: 28106855 PMCID: PMC6155649 DOI: 10.3390/molecules22010161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/08/2017] [Accepted: 01/12/2017] [Indexed: 12/15/2022] Open
Abstract
With the aim of increasing the structural diversity on the early antimalarial drug plasmodione, an efficient and versatile procedure to prepare a series of biaryl- and N-arylalkylamines as plasmodione analogues is described. Using the naturally occurring and commercially available menadione as starting material, a 2-step sequence using a Kochi-Anderson reaction and subsequent Pd-catalyzed Suzuki-Miyaura coupling was developed to prepare three representative biphenyl derivatives in good yields for antimalarial evaluation. In addition, synthetic methodologies to afford 3-benzylmenadione derivatives bearing a terminal -N(Me)₂ or -N(Et)₂ in different positions (ortho, meta and para) on the aryl ring of the benzylic chain of plasmodione were investigated through reductive amination was used as the optimal route to prepare these protonable N-arylalkylamine privileged scaffolds. The antimalarial activities were evaluated and discussed in light of their physicochemical properties. Among the newly synthesized compounds, the para-position of the substituent remains the most favourable position on the benzyl chain and the carbamate -NHBoc was found active both in vitro (42 nM versus 29 nM for plasmodione) and in vivo in Plasmodium berghei-infected mice. The measured acido-basic features of these new molecules support the cytosol-food vacuole shuttling properties of non-protonable plasmodione derivatives essential for redox-cycling. These findings may be useful in antimalarial drug optimization.
Collapse
|
17
|
The Redox Cycler Plasmodione Is a Fast-Acting Antimalarial Lead Compound with Pronounced Activity against Sexual and Early Asexual Blood-Stage Parasites. Antimicrob Agents Chemother 2016; 60:5146-58. [PMID: 27297478 DOI: 10.1128/aac.02975-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 05/27/2016] [Indexed: 01/16/2023] Open
Abstract
Previously, we presented the chemical design of a promising series of antimalarial agents, 3-[substituted-benzyl]-menadiones, with potent in vitro and in vivo activities. Ongoing studies on the mode of action of antimalarial 3-[substituted-benzyl]-menadiones revealed that these agents disturb the redox balance of the parasitized erythrocyte by acting as redox cyclers-a strategy that is broadly recognized for the development of new antimalarial agents. Here we report a detailed parasitological characterization of the in vitro activity profile of the lead compound 3-[4-(trifluoromethyl)benzyl]-menadione 1c (henceforth called plasmodione) against intraerythrocytic stages of the human malaria parasite Plasmodium falciparum We show that plasmodione acts rapidly against asexual blood stages, thereby disrupting the clinically relevant intraerythrocytic life cycle of the parasite, and furthermore has potent activity against early gametocytes. The lead's antiplasmodial activity was unaffected by the most common mechanisms of resistance to clinically used antimalarials. Moreover, plasmodione has a low potential to induce drug resistance and a high killing speed, as observed by culturing parasites under continuous drug pressure. Drug interactions with licensed antimalarial drugs were also established using the fixed-ratio isobologram method. Initial toxicological profiling suggests that plasmodione is a safe agent for possible human use. Our studies identify plasmodione as a promising antimalarial lead compound and strongly support the future development of redox-active benzylmenadiones as antimalarial agents.
Collapse
|