1
|
Ivanov KS, Samburskiy DE, Zargarova LV, Komarov VY, Mostovich EA. Construction of Annulated Spiro[4.4]-nonane-diones via the Tandem [4 + 2]-Cycloaddition/Aromatization Reaction. J Org Chem 2023; 88:11003-11009. [PMID: 37462945 DOI: 10.1021/acs.joc.3c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A method for the synthesis of both symmetric and asymmetric fused spiro[4.4]-nonane-dione derivatives has been developed. It is based on a Diels-Alder reaction of spiro[4.4]nona-2,7-diene-1,6-dione as a dienophile component followed by immediate aromatization of the adduct. An active diene component can be generated using the tetrabromoxylene/NaI system, the 1,3-diphenylisobenzofuran/BF3 system, or substituted cyclones.
Collapse
Affiliation(s)
- Konstantin S Ivanov
- Laboratory of Low-carbon Chemical Technologies, ORËL Research Lab, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Denis E Samburskiy
- Laboratory of Low-carbon Chemical Technologies, ORËL Research Lab, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Leila V Zargarova
- Laboratory of Low-carbon Chemical Technologies, ORËL Research Lab, Novosibirsk State University, Novosibirsk 630090, Russia
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | | | - Evgeny A Mostovich
- Laboratory of Low-carbon Chemical Technologies, ORËL Research Lab, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Pigot C, Brunel D, Dumur F. Indane-1,3-Dione: From Synthetic Strategies to Applications. Molecules 2022; 27:5976. [PMID: 36144711 PMCID: PMC9501146 DOI: 10.3390/molecules27185976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Indane-1,3-dione is a versatile building block used in numerous applications ranging from biosensing, bioactivity, bioimaging to electronics or photopolymerization. In this review, an overview of the different chemical reactions enabling access to this scaffold but also to the most common derivatives of indane-1,3-dione are presented. Parallel to this, the different applications in which indane-1,3-dione-based structures have been used are also presented, evidencing the versatility of this structure.
Collapse
Affiliation(s)
- Corentin Pigot
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Damien Brunel
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
3
|
Das S. Recent applications of 1,3-indanedione in organic transformations for the construction of fused- and spiro scaffolds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Ozcelik A, Aranda D, Pereira-Cameselle R, Talavera M, Covelo B, Santoro F, Peña-Gallego Á, Alonso-Gómez JL. ON/OFF Spiroconjugation through Peripheral Functionalization: Impact on the Reactivity and Chiroptical Properties of Spirobifluorenes. Chempluschem 2022; 87:e202100554. [PMID: 35415974 DOI: 10.1002/cplu.202100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Indexed: 02/03/2023]
Abstract
Spirobifluorenes are an important class of spiro compounds frequently used in the field of organic electronics. However, harnessing spiroconjugation to obtain high-performance in such structural motifs remains unexplored. We herein propose that peripheral functionalization may serve as a useful tool to control spiroconjugation in an ON/OFF manner on both chemical reactivity and photophysical properties. In particular, the ratio of mono- and di-functionalized spirobifluorenes found experimentally during their synthesis were found to be 3/2, 7/2, and 12/2 for phenyl, nitro-phenyl and amino-phenyl analogues, respectively. These remarkable reactivity differences correlate with the spiroconjugation character evaluated theoretically at the CAM-B3LYP/6-31G(d,p) level of theory. Additionally, comparison of experimental and predicted optical and chiroptical responses shows that spiroconjugated molecular orbitals have a significant or negligible involvement on the main electronic transitions depending on the peripheral functionality of the spirobifluorene.
Collapse
Affiliation(s)
- Ani Ozcelik
- Departamento de Química Orgánica, Universidad de Vigo, Campus Universitario, 36310, Vigo, Spain
| | - Daniel Aranda
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Pisa, Italy
| | | | - María Talavera
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Berta Covelo
- CACTI (Centro de Apoyo Científico-Tecnológico a la Investigación), Universidad de Vigo, Campus Universitario, 36310, Vigo, Spain
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Pisa, Italy
| | - Ángeles Peña-Gallego
- Departamento de Química Física, Universidad de Vigo, Campus Universitario, 36310, Vigo, Spain
| | - J Lorenzo Alonso-Gómez
- Departamento de Química Orgánica, Universidad de Vigo, Campus Universitario, 36310, Vigo, Spain
| |
Collapse
|
5
|
Hammoud F, Hijazi A, Ibrahim-Ouali M, Lalevée J, Dumur F. Chemical engineering around the 5,12-dihydroindolo[3,2-a]carbazole scaffold : Fine tuning of the optical properties of visible light photoinitiators of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Ivanov KS, Riesebeck T, Skolyapova A, Liakisheva I, Kazantsev MS, Sonina AA, Peshkov RY, Mostovich EA. P 2O 5-Promoted Cyclization of Di[aryl(hetaryl)methyl] Malonic Acids as a Pathway to Fused Spiro[4.4]nonane-1,6-Diones. J Org Chem 2022; 87:2456-2469. [PMID: 35166542 DOI: 10.1021/acs.joc.1c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conventional spiro-linked conjugated materials are attractive for organic optoelectronic applications due to the unique combination of their optical and electronic properties. However, spiro-linked conjugated materials with conjugation extension directed along the main axis of the molecule are still only rare examples among the vast number of spiro-linked conjugated materials. Herein, the synthesis, leading to π-extended spiro-linked conjugated materials─spiro[4.4]nonane-1,6-diones and spiro[5.5]undecane-1,7-diones─has been developed and optimized. The proposed design concept starts from readily available malonic esters and contains several steps: double alkylation of malonic ester with bromomethylaryl(hetaryl)s; conversion of a malonic ester into the corresponding malonic acid; electrophilic spirocyclization of the latter into the annulated spiro[4.4]nonane-1,6-dione or spiro[5.5]undecane-1,7-dione in the presence of phosphorus pentoxide. On the basis of these insights, the developed method yielded spiro-linked conjugated cores fused with benzene, thiophene, and naphthalene, decorated with active halogen atoms. The structures of the synthesized spirocycles were determined by single-crystal X-ray diffraction analysis. Benzene fused spiro[4.4]nonane-1,6-dione decorated with bromine atoms was transformed into V-shape phenylene-thiophene co-oligomer type spirodimers via Stille coupling. The spiro-bis(4-n-dodecylphenyl)-2,2'-bithiophene derivative possessed high photoluminescence properties in both solution and solid state with a photoluminescence quantum yield (PL QY) of 38%.
Collapse
Affiliation(s)
| | - Tim Riesebeck
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | | | - Irina Liakisheva
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Maxim S Kazantsev
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.,N. N. Vorozhtzov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent'ev Ave, 9, Novosibirsk 630090, Russia
| | - Alina A Sonina
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.,N. N. Vorozhtzov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent'ev Ave, 9, Novosibirsk 630090, Russia
| | - Roman Yu Peshkov
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | | |
Collapse
|
7
|
Grenz DC, Rose D, Wössner JS, Wilbuer J, Adler F, Hermann M, Chan C, Adachi C, Esser B. Spiroconjugated Tetraaminospirenes as Donors in Color-Tunable Charge-Transfer Emitters with Donor-Acceptor Structure. Chemistry 2022; 28:e202104150. [PMID: 34860443 PMCID: PMC9299689 DOI: 10.1002/chem.202104150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 11/07/2022]
Abstract
Charge-transfer emitters are attractive due to their color tunability and potentially high photoluminescence quantum yields (PLQYs). We herein present tetraaminospirenes as donor moieties, which, in combination with a variety of acceptors, furnished 12 charge-transfer emitters with a range of emission colors and PLQYs of up to 99 %. The spatial separation of their frontier molecular orbitals was obtained through careful structural design, and two DA structures were confirmed by X-ray crystallography. A range of photophysical measurements supported by DFT calculations shed light on the optoelectronic properties of this new family of spiro-NN-donor-acceptor dyes.
Collapse
Affiliation(s)
- David C. Grenz
- Institute for Organic ChemistryUniversity of FreiburgAlbertstraße 2179104FreiburgGermany
- Center for Organic Photonics and Electronics Research OPERAKyushu University744 Motooka, Nishi819-0395FukuokaJapan
| | - Daniel Rose
- Institute for Organic ChemistryUniversity of FreiburgAlbertstraße 2179104FreiburgGermany
| | - Jan S. Wössner
- Institute for Organic ChemistryUniversity of FreiburgAlbertstraße 2179104FreiburgGermany
| | - Jennifer Wilbuer
- Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Florin Adler
- Institute for Organic ChemistryUniversity of FreiburgAlbertstraße 2179104FreiburgGermany
| | - Mathias Hermann
- Institute for Organic ChemistryUniversity of FreiburgAlbertstraße 2179104FreiburgGermany
| | - Chin‐Yiu Chan
- Center for Organic Photonics and Electronics Research OPERAKyushu University744 Motooka, Nishi819-0395FukuokaJapan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research OPERAKyushu University744 Motooka, Nishi819-0395FukuokaJapan
| | - Birgit Esser
- Institute for Organic ChemistryUniversity of FreiburgAlbertstraße 2179104FreiburgGermany
- Freiburg Materials Research CenterUniversity of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
8
|
Wang W, Li G, Li Y, Zhan C, Lu X, Xiao S. Positional isomeric effect of monobrominated ending groups within small molecule acceptors on photovoltaic performance. RSC Adv 2021; 11:31992-31999. [PMID: 35495533 PMCID: PMC9042045 DOI: 10.1039/d1ra05426k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022] Open
Abstract
As an ending acceptor unit (A) within acceptor-donor-acceptor (A-D-A)-type small molecule acceptors (SMAs), monobrominated 1,1-dicyanomethylene-3-indanone (IC-Br) plays a critical role on developing high-performance SMAs and polymer acceptors from polymerizing SMAs. IC-Br is usually a mixture (IC-Br-m) consisting of positional isomeric IC-Br-γ and IC-Br-δ (bromine substituted on the γ and δ positions, respectively). The positional isomeric effect of these monobrominated ending groups has been witnessed to take an important role on regulating the photovoltaic performance. Fully investigating this isomeric effect of monobromination would be of great value for SMAs and even polymer acceptors. In this study, benefitting from the separation of IC-Br-γ and IC-Br-δ from IC-Br-m with high yields, bis(thieno[3,2-b]cyclopenta)benzo[1,2-b:4,5-b']diselenophene (BDSeT) was chosen as the D unit and combined with IC-Br-γ, IC-Br-δ and IC-Br-m as A units, respectively. Three A-D-A type SMAs (BDSeTICBr-γ, BDSeTICBr-δ and BDSeTICBr-m) have thus been obtained. When blended with the representative donor polymer of PBDB-T-2Cl to construct bulk heterojunction (BHJ) polymer solar cells (PSCs), BDSeTICBr-γ, BDSeTICBr-δ and BDSeTICBr-m devices offered power conversion efficiencies (PCEs) of 9.42, 10.63, and 11.54% respectively. The result indicated the superior photovoltaic performance of the isomer mixture over the pure isomers, which was contrary to the reported ones that the pure isomers of SMAs used to give a better performance. The superior performance of the BDSeTICBr-m devices was mainly reflected in the improved carrier generation and transport as well as the carrier recombination suppression. In the three PBDB-T-2Cl:SMA BHJ films, a comparable intermixing phase and acceptor domain sizes were observed. Compared with BDSeTICBr-γ and BDSeTICBr-δ, BDSeTICBr-m showed a preferential face-on orientated packing with the closest π-π stacking in its BHJ film, probably accounting for its higher photovoltaic performance than those of the pure isomers. This study provides an alternative sight to develop efficient SMAs with suitably monobrominated IC ending groups for the strategy of polymerizing SMAs.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Gongchun Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Yuhao Li
- Department of Physics, The Chinese University of Hong Kong Sha Tin Hong Kong SAR 999077 P. R. China
| | - Chun Zhan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong Sha Tin Hong Kong SAR 999077 P. R. China
| | - Shengqiang Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P. R. China
| |
Collapse
|
9
|
Sigalov MV, Shainyan BA, Chipanina NN, Oznobikhina LP, Sterkhova IV. 2-(1H-diazol-2-ylmethylene)indane-1-ones and 2-(1H-diazol-2-ylmethylene)-1H-indene-1,3(2H)-diones: Photoisomerization and hydrogen-bonding-induced association. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Wössner JS, Esser B. Spiroconjugated Donor-σ-Acceptor Charge-Transfer Dyes: Effect of the π-Subsystems on the Optoelectronic Properties. J Org Chem 2020; 85:5048-5057. [PMID: 32180403 DOI: 10.1021/acs.joc.0c00567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Charge-transfer-based materials with intramolecular donor-acceptor structures are attractive for technological applications. Herein, a series of donor-σ-acceptor dyes has been prepared in a modular approach. The design of these intramolecular charge-transfer dyes is based on the concept of spiroconjugation, which leads to unique materials with special optical properties. The optical transitions are based on intramolecular charge transfer, as shown by solvatochromic measurements and density functional theory (DFT) calculations. Crystallographic, computational, electrochemical, and optical studies were performed to clarify the effect of different perpendicular π-moieties on the optoelectronic properties. Our molecular tuning allowed for the synthesis of molecules exhibiting strong visible-range absorption. The compounds are not fluorescent due to structural changes in the excited state, as revealed by DFT calculations. Finally, our study describes enantiomerically pure spiroconjugated absorber molecules using 1,1'-binaphthyl-2,2'-diol (BINOL) units on the donor part.
Collapse
Affiliation(s)
- Jan S Wössner
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Birgit Esser
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.,Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
11
|
Zhou L, Xia Y, Wang YZ, Fang JD, Liu XY. Mn(III)-promoted synthesis of spiroannular tricyclic scaffolds via sulfonylation/dearomatization of biaryl ynones. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Wössner JS, Grenz DC, Kratzert D, Esser B. Tuning the optical properties of spiro-centered charge-transfer dyes by extending the donor or acceptor part. Org Chem Front 2019. [DOI: 10.1039/c9qo01134j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spiroconjugated charge-transfer dyes with N–CO-substructure are presented, whose optical properties are tuned by extending the donor or acceptor part.
Collapse
Affiliation(s)
- Jan S. Wössner
- Institute for Organic Chemistry
- University of Freiburg
- 79104 Freiburg
- Germany
| | - David C. Grenz
- Institute for Organic Chemistry
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Daniel Kratzert
- Institute for Inorganic and Analytical Chemistry
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Birgit Esser
- Institute for Organic Chemistry
- University of Freiburg
- 79104 Freiburg
- Germany
- Freiburg Materials Research Center
| |
Collapse
|
13
|
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry; Indian Institute of Technology-Bombay; Powai 400076 Mumbai India
| | | | - Rashid Ali
- Department of Chemistry; Indian Institute of Technology-Bombay; Powai 400076 Mumbai India
| |
Collapse
|
14
|
Lv N, Chen Z, Liu Y, Liu Z, Zhang Y. Synthesis of Functionalized Indenones via Rh-Catalyzed C–H Activation Cascade Reaction. Org Lett 2017; 19:2588-2591. [DOI: 10.1021/acs.orglett.7b00906] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ningning Lv
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhengkai Chen
- Department
of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yue Liu
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhanxiang Liu
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuhong Zhang
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
15
|
Baumann AN, Eisold M, Didier D. Stereoselective Sequence toward Biologically Active Fused Alkylidenecyclobutanes. Org Lett 2017; 19:2114-2117. [PMID: 28374585 DOI: 10.1021/acs.orglett.7b00724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Combining an efficient preparation of cyclobutenylmetal species, high-yielding cross-coupling reactions, and highly diastereoselective [4 + 2]-cycloaddition led to opening a new route toward the synthesis of fused alkylidenecyclobutanes containing up to five consecutive stereocenters. New complex architectures, analogues to protoilludane skeletons, were obtained in a very efficient manner and with a minimum number of steps starting from commercial sources and were tested for their cytotoxicity against leukemia cell lines HL60.
Collapse
Affiliation(s)
- Andreas N Baumann
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University , Butenandtstraße 5-13, 81377 Munich, Germany
| | - Michael Eisold
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University , Butenandtstraße 5-13, 81377 Munich, Germany
| | - Dorian Didier
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University , Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|