1
|
Volpe S, Listro R, Ambrosio FA, Garbagnoli M, Linciano P, Rossi D, Costa G, Alcaro S, Vasile F, Hirsch AKH, Collina S. Identification of HuR-RNA Interfering Compounds by Dynamic Combinatorial Chemistry and Fluorescence Polarization. ACS Med Chem Lett 2023; 14:1509-1516. [PMID: 37970588 PMCID: PMC10641899 DOI: 10.1021/acsmedchemlett.3c00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
The RNA binding protein HuR regulates the post-transcriptional process of different oncogenes and tumor suppressor genes, and its dysregulation is linked with cancer. Thus, modulating the complex HuR-RNA represents a promising anticancer strategy. To search for novel HuR ligands able to interfere with the HuR-RNA complex, the protein-templated dynamic combinatorial chemistry (pt-DCC) method was utilized. The recombinant RRM1+2 protein construct, which contains essential domains for ligand-HuR binding and exhibits enhanced solubility and stability compared to the native protein, was used for pt-DCC. Seven acylhydrazones with over 80% amplification were identified. The binding of the fragments to HuR extracted from DCC was validated using STD-NMR, and molecular modeling studies revealed the ability of the compounds to bind HuR at the mRNA binding pocket. Notably, three compounds effectively interfered with HuR-RNA binding in fluorescence polarization studies, suggesting their potential as foundational compounds for developing anticancer HuR-RNA interfering agents.
Collapse
Affiliation(s)
- Serena
Della Volpe
- Department
of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz
Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Roberta Listro
- Department
of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Francesca Alessandra Ambrosio
- Department
of Experimental and Clinical Medicine, University
“Magna Græcia” of Catanzaro, Campus “S. Venuta”,
Viale Europa, 88100 Catanzaro, Italy
| | - Martina Garbagnoli
- Department
of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Pasquale Linciano
- Department
of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department
of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Giosuè Costa
- Department
of Health Sciences, University “Magna
Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Net4Science
Academic Spin-Off, University “Magna
Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Department
of Health Sciences, University “Magna
Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Net4Science
Academic Spin-Off, University “Magna
Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Vasile
- Department
of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Anna K. H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz
Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Simona Collina
- Department
of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
2
|
Vasile F, Lavore F, Gazzola S, Vettraino C, Parisini E, Piarulli U, Belvisi L, Civera M. A combined fragment-based virtual screening and STD-NMR approach for the identification of E-cadherin ligands. Front Chem 2022; 10:946087. [PMID: 36059878 PMCID: PMC9437437 DOI: 10.3389/fchem.2022.946087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Cadherins promote cell-cell adhesion by forming homophilic interactions via their N-terminal extracellular domains. Hence, they have broad-ranging physiological effects on tissue organization and homeostasis. When dysregulated, cadherins contribute to different aspects of cancer progression and metastasis; therefore, targeting the cadherin adhesive interface with small-molecule antagonists is expected to have potential therapeutic and diagnostic value. Here, we used molecular docking simulations to evaluate the propensity of three different libraries of commercially available drug-like fragments (nearly 18,000 compounds) to accommodate into the Trp2 binding pocket of E-cadherin, a crucial site for the orchestration of the protein’s dimerization mechanism. Top-ranked fragments featuring five different aromatic chemotypes were expanded by means of a similarity search on the PubChem database (Tanimoto index >90%). Of this set, seven fragments containing an aromatic scaffold linked to an aliphatic chain bearing at least one amine group were finally selected for further analysis. Ligand-based NMR data (Saturation Transfer Difference, STD) and molecular dynamics simulations suggest that these fragments can bind E-cadherin mostly through their aromatic moiety, while their aliphatic portions may also diversely engage with the mobile regions of the binding site. A tetrahydro-β-carboline scaffold functionalized with an ethylamine emerged as the most promising fragment.
Collapse
Affiliation(s)
- Francesca Vasile
- Department of Chemistry, Università Degli Studi di Milano, Milan, Italy
| | - Francesca Lavore
- Department of Chemistry, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Gazzola
- Department of Science and High Technology, Università Degli Studi Dell’Insubria, Como, Italy
| | - Chiara Vettraino
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia @Polimi, Milan, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia @Polimi, Milan, Italy
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Chemistry “Giacomo Ciamician”, Università Degli Studi di Bologna, Bologna, Italy
| | - Umberto Piarulli
- Department of Science and High Technology, Università Degli Studi Dell’Insubria, Como, Italy
| | - Laura Belvisi
- Department of Chemistry, Università Degli Studi di Milano, Milan, Italy
| | - Monica Civera
- Department of Chemistry, Università Degli Studi di Milano, Milan, Italy
- *Correspondence: Monica Civera,
| |
Collapse
|
3
|
Coppa C, Sorrentino L, Civera M, Minneci M, Vasile F, Sattin S. New Chemotypes for the Inhibition of (p)ppGpp Synthesis in the Quest for New Antimicrobial Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103097. [PMID: 35630574 PMCID: PMC9143738 DOI: 10.3390/molecules27103097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to our society from both the medical and economic point of view, while the antibiotic discovery pipeline has been dwindling over the last decades. Targeting non-essential bacterial pathways, such as those leading to antibiotic persistence, a bacterial bet-hedging strategy, will lead to new molecular entities displaying low selective pressure, thereby reducing the insurgence of AMR. Here, we describe a way to target (p)ppGpp (guanosine tetra- or penta-phosphate) signaling, a non-essential pathway involved in the formation of persisters, with a structure-based approach. A superfamily of enzymes called RSH (RelA/SpoT Homolog) regulates the intracellular levels of this alarmone. We virtually screened several fragment libraries against the (p)ppGpp synthetase domain of our RSH chosen model RelSeq, selected three main chemotypes, and measured their interaction with RelSeq by thermal shift assay and STD-NMR. Most of the tested fragments are selective for the synthetase domain, allowing us to select the aminobenzoic acid scaffold as a hit for lead development.
Collapse
|
4
|
Civera M, Moroni E, Sorrentino L, Vasile F, Sattin S. Chemical and Biophysical Approaches to Allosteric Modulation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monica Civera
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche Giulio Natta, SCITEC Via Mario Bianco 9 20131 Milan Italy
| | - Luca Sorrentino
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Francesca Vasile
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Sara Sattin
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
5
|
Cassiano C, Morretta E, Costantini M, Fassi EMA, Colombo G, Sattin S, Casapullo A. Analysis of Hsp90 allosteric modulators interactome reveals a potential dual action mode involving mitochondrial MDH2. Bioorg Chem 2021; 115:105258. [PMID: 34392176 DOI: 10.1016/j.bioorg.2021.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022]
Abstract
Hsp90 (i.e., Heat shock protein 90) is a well-established therapeutic target for several diseases, ranging from misfolding-related disfunctions to cancer. In this framework, we have developed in recent years a family of benzofuran compounds that act as Hsp90 allosteric modulators. Such molecules can interfere with the stability of some relevant Hsp90 client oncoproteins, showing a low μM cytotoxic activity in vitro in cancer cell lines. Here we identify the target profile of these chemical probes by means of chemical proteomics, which established MDH2 (mitochondrial malate dehydrogenase) as an additional relevant cellular target that might help elucidate the molecular mechanism of their citotoxicity. Western blotting, DARTS (i.e., Drug Affinity Responsive Target Stability) and enzymatic assays data confirmed a dose-dependent interaction of MDH2 with several members of the benzofuran Hsp90 modulators family and a computational model allowed to interpret the observed interactions.
Collapse
Affiliation(s)
- Chiara Cassiano
- Università degli Studi di Salerno, Dipartimento di Farmacia, via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Elva Morretta
- Università degli Studi di Salerno, Dipartimento di Farmacia, via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Matteo Costantini
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, 20133 Milano, Italy
| | - Enrico M A Fassi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Giorgio Colombo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC, CNR, Via Mario Bianco 9, 20131 Milano, Italy; Università degli studi di Pavia, Dipartimento di Chimica, Via Taramelli 12, 27100 Pavia, Italy.
| | - Sara Sattin
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, 20133 Milano, Italy.
| | - Agostino Casapullo
- Università degli Studi di Salerno, Dipartimento di Farmacia, via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| |
Collapse
|
6
|
Ambrosio FA, Coricello A, Costa G, Lupia A, Micaelli M, Marchesi N, Sala F, Pascale A, Rossi D, Vasile F, Alcaro S, Collina S. Identification of Compounds Targeting HuD. Another Brick in the Wall of Neurodegenerative Disease Treatment. J Med Chem 2021; 64:9989-10000. [PMID: 34219450 DOI: 10.1021/acs.jmedchem.1c00191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ELAV-like (ELAVL) RNA-binding proteins play a pivotal role in post-transcriptional processes, and their dysregulation is involved in several pathologies. This work was focused on HuD (ELAVL4), which is specifically expressed in nervous tissues, and involved in differentiation and synaptic plasticity mechanisms. HuD represents a new, albeit unexplored, candidate target for the treatment of several relevant neurodegenerative diseases. The aim of this pioneering work was the identification of new molecules able to recognize and bind HuD, thus interfering with its activity. We combined virtual screening, molecular dynamics (MD), and STD-NMR techniques. Starting from around 51 000 compounds, four promising hits eventually provided experimental evidence of their ability to bind HuD. Among the selected best hits, folic acid was found to be the most interesting one, being able to well recognize the HuD binding site. Our results provide a basis for the identification of new HuD interfering compounds which may be useful against neurodegenerative syndromes.
Collapse
Affiliation(s)
- Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy
| | - Adriana Coricello
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy.,Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy.,Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo, Belcastro, Catanzaro, Italy
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy.,Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo, Belcastro, Catanzaro, Italy
| | - Mariachiara Micaelli
- CIBIO-Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Federico Sala
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.,Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Alessia Pascale
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Francesca Vasile
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy.,Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100 Catanzaro, Italy.,Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo, Belcastro, Catanzaro, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
7
|
Tomašič T, Durcik M, Keegan BM, Skledar DG, Zajec Ž, Blagg BSJ, Bryant SD. Discovery of Novel Hsp90 C-Terminal Inhibitors Using 3D-Pharmacophores Derived from Molecular Dynamics Simulations. Int J Mol Sci 2020; 21:ijms21186898. [PMID: 32962253 PMCID: PMC7555175 DOI: 10.3390/ijms21186898] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Hsp90 C-terminal domain (CTD) inhibitors are promising novel agents for cancer treatment, as they do not induce the heat shock response associated with Hsp90 N-terminal inhibitors. One challenge associated with CTD inhibitors is the lack of a co-crystallized complex, requiring the use of predicted allosteric apo pocket, limiting structure-based (SB) design approaches. To address this, a unique approach that enables the derivation and analysis of interactions between ligands and proteins from molecular dynamics (MD) trajectories was used to derive pharmacophore models for virtual screening (VS) and identify suitable binding sites for SB design. Furthermore, ligand-based (LB) pharmacophores were developed using a set of CTD inhibitors to compare VS performance with the MD derived models. Virtual hits identified by VS with both SB and LB models were tested for antiproliferative activity. Compounds 9 and 11 displayed antiproliferative activities in MCF-7 and Hep G2 cancer cell lines. Compound 11 inhibited Hsp90-dependent refolding of denatured luciferase and induced the degradation of Hsp90 clients without the concomitant induction of Hsp70 levels. Furthermore, compound 11 offers a unique scaffold that is promising for the further synthetic optimization and development of molecules needed for the evaluation of the Hsp90 CTD as a target for the development of anticancer drugs.
Collapse
Affiliation(s)
- Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (M.D.); (D.G.S.); (Ž.Z.)
- Correspondence: ; Tel.: +386-1-4769-556
| | - Martina Durcik
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (M.D.); (D.G.S.); (Ž.Z.)
| | - Bradley M. Keegan
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN 46556, USA; (B.M.K.); (B.S.J.B.)
| | - Darja Gramec Skledar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (M.D.); (D.G.S.); (Ž.Z.)
| | - Živa Zajec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (M.D.); (D.G.S.); (Ž.Z.)
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN 46556, USA; (B.M.K.); (B.S.J.B.)
| | - Sharon D. Bryant
- Inte:Ligand Softwareentwicklungs- und Consulting GmbH, Mariahilferstrasse 74B, 1070 Vienna, Austria;
| |
Collapse
|
8
|
Volpe SD, Listro R, Parafioriti M, Di Giacomo M, Rossi D, Ambrosio FA, Costa G, Alcaro S, Ortuso F, Hirsch AKH, Vasile F, Collina S. BOPC1 Enantiomers Preparation and HuR Interaction Study. From Molecular Modeling to a Curious DEEP-STD NMR Application. ACS Med Chem Lett 2020; 11:883-888. [PMID: 32435400 DOI: 10.1021/acsmedchemlett.9b00659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/28/2020] [Indexed: 01/13/2023] Open
Abstract
The Hu family of RNA-binding proteins plays a crucial role in post-transcriptional processes; indeed, Hu-RNA complexes are involved in various dysfunctions (i.e., inflammation, neurodegeneration, and cancer) and have been recently proposed as promising therapeutic targets. Intrigued by this concept, our research efforts aim at identifying small molecules able to modulate HuR-RNA interactions, with a focus on subtype HuR, upregulated and dysregulated in several cancers. By applying structure-based design, we had already identified racemic trans-BOPC1 as promising HuR binder. In this Letter, we accomplished the enantio-resolution, the assignment of the absolute configuration, and the recognition study with HuR of enantiomerically pure trans-BOPC1. For the first time, we apply DEEP (differential epitope mapping)-STD NMR to study the interaction of BOPC1 with HuR and compare its enantiomers, gaining information on ligand orientation and amino acids involved in the interaction, and thus increasing focus on the in silico binding site model.
Collapse
Affiliation(s)
- Serena Della Volpe
- Department of Drug Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Roberta Listro
- Department of Drug Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Michela Parafioriti
- Department of Drug Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marcello Di Giacomo
- Department of Drug Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | | | - Giosuè Costa
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Francesco Ortuso
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization, Campus Building E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Francesca Vasile
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
9
|
Berry J, Despras G, Lindhorst TK. A compatibility study on the glycosylation of 4,4′-dihydroxyazobenzene. RSC Adv 2020; 10:17432-17437. [PMID: 35515580 PMCID: PMC9053478 DOI: 10.1039/d0ra02435j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/22/2020] [Indexed: 12/25/2022] Open
Abstract
Photoresponsive glycoconjugates based on the azobenzene photoswitch are valuable molecules which can be used as tools for the investigation of carbohydrate–protein interactions or as precursors of shape-switchable molecular architectures, for example. To access such compounds, glycosylation of 4,4′-dihydroxyazobenzene (DHAB) is a critical step, frequently giving heterogeneous results because DHAB is a challenging glycosyl acceptor. Therefore, DHAB glucosylation was studied using nine different glycosyl donors, and reaction conditions were systematically varied in order to find a reliable procedure, especially towards the preparation of azobenzene bis-glucosides. Particular emphasis was put on glucosyl donors which were differentiated at the primary 6-position (N3, OAc) for further functionalisation. The present study allowed us to identify suitable glycosyl donors and reaction conditions matching with DHAB, affording the bis-glycosylated products in fair yields and good stereocontrol. The glycosylation of 4,4′-dihydroxyazobenzene was investigated to identify suitable conditions providing access to valuable photoswitchable glycoconjugates.![]()
Collapse
Affiliation(s)
- Jonathan Berry
- Otto Diels Institute of Organic Chemistry
- Christiana Albertina University of Kiel
- 24118 Kiel
- Germany
| | - Guillaume Despras
- Otto Diels Institute of Organic Chemistry
- Christiana Albertina University of Kiel
- 24118 Kiel
- Germany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry
- Christiana Albertina University of Kiel
- 24118 Kiel
- Germany
| |
Collapse
|
10
|
D'Annessa I, Raniolo S, Limongelli V, Di Marino D, Colombo G. Ligand Binding, Unbinding, and Allosteric Effects: Deciphering Small-Molecule Modulation of HSP90. J Chem Theory Comput 2019; 15:6368-6381. [PMID: 31538783 DOI: 10.1021/acs.jctc.9b00319] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The molecular chaperone HSP90 oversees the functional activation of a large number of client proteins. Because of its role in multiple pathways linked to cancer and neurodegeneration, drug discovery targeting HSP90 has been actively pursued. Yet, a number of inhibitors failed to meet expectations due to induced toxicity problems. In this context, allosteric perturbation has emerged as an alternative strategy for the pharmacological modulation of HSP90 functions. Specifically, novel allosteric stimulators showed the interesting capability of accelerating HSP90 closure dynamics and ATPase activities while inducing tumor cell death. Here, we gain atomistic insight into the mechanisms of allosteric ligand recognition and their consequences on the functional dynamics of HSP90, starting from the fully unbound state. We integrate advanced computational sampling methods based on FunnelMetadynamics, with the analysis of internal dynamics of the structural ensembles visited during the simulations. We observe several binding/unbinding events, and from these, we derive an accurate estimation of the absolute binding free energy. Importantly, we show that different binding poses induce different dynamics states. Our work for the first time explicitly correlates HSP90 responses to binding/unbinding of an allosteric ligand to the modulation of functionally oriented protein motions.
Collapse
Affiliation(s)
| | - Stefano Raniolo
- Università della Svizzera Italiana (USI) , Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , via G. Buffi 13 , CH-Lugano , Switzerland
| | - Vittorio Limongelli
- Università della Svizzera Italiana (USI) , Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , via G. Buffi 13 , CH-Lugano , Switzerland.,Department of Pharmacy , University of Naples ″Federico II″ , via D. Montesano 49 , I-80131 Naples , Italy
| | - Daniele Di Marino
- Università della Svizzera Italiana (USI) , Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , via G. Buffi 13 , CH-Lugano , Switzerland.,Department of Life and Environmental Sciences - New York-Marche Structural Biology Center (NY-MaSBiC) , Polytechnic University of Marche , Via Brecce Bianche , 60131 Ancona , Italy
| | - Giorgio Colombo
- ICRM-CNR , Via Mario Bianco 9 , 20131 Milano , Italy.,Department of Chemistry , University of Pavia , V.le Taramelli 12 , 27100 Pavia , Italy
| |
Collapse
|
11
|
Grosso S, Radaelli F, Fronza G, Passarella D, Monti D, Riva S. Studies on the Laccase‐Catalyzed Oxidation of 4‐Hydroxy‐Chalcones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Simone Grosso
- Istituto di Chimica del Riconoscimento Molecolare (ICRM)C.N.R. via Mario Bianco 9 20131 Milano Italy
| | - Fabio Radaelli
- Istituto di Chimica del Riconoscimento Molecolare (ICRM)C.N.R. via Mario Bianco 9 20131 Milano Italy
| | - Giovanni Fronza
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), UOS-Milano PolitecnicoC.N.R. via Mancinelli 7 20133 Milano Italy
| | - Daniele Passarella
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare (ICRM)C.N.R. via Mario Bianco 9 20131 Milano Italy
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare (ICRM)C.N.R. via Mario Bianco 9 20131 Milano Italy
| |
Collapse
|
12
|
Bassanini I, D'Annessa I, Costa M, Monti D, Colombo G, Riva S. Chemo-enzymatic synthesis of (E)-2,3-diaryl-5-styryl-trans-2,3-dihydrobenzofuran-based scaffolds and their in vitro and in silico evaluation as a novel sub-family of potential allosteric modulators of the 90 kDa heat shock protein (Hsp90). Org Biomol Chem 2019; 16:3741-3753. [PMID: 29722782 DOI: 10.1039/c8ob00644j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein we propose a facile, versatile and selective chemo-enzymatic synthesis of substituted (E)-2,3-diaryl-5-styryl-trans-2,3-dihydrobenzofurans based on the exploitation of the laccase-mediated oxidative (homo)coupling of (E)-4-styrylphenols. Thanks to this novel synthetic strategy, a library of benzofuran-based potential allosteric activators of the Heat shock protein 90 (Hsp90) was easily prepared. Moreover, considering their structural analogies to previously reported allosteric modulators, the sixteen new compounds synthesized in this work were tested in vitro for their potential stimulatory action on the ATPase activity of the molecular chaperone Hsp90. Combining experimental and computational results, we propose a mechanism of action for these compounds, and expand the structure-activity relationship (SAR) information available for benzofuran-based Hsp90 activators.
Collapse
Affiliation(s)
- Ivan Bassanini
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, 20131, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
Kumar Mv V, Ebna Noor R, Davis RE, Zhang Z, Sipavicius E, Keramisanou D, Blagg BSJ, Gelis I. Molecular insights into the interaction of Hsp90 with allosteric inhibitors targeting the C-terminal domain. MEDCHEMCOMM 2018; 9:1323-1331. [PMID: 30151087 PMCID: PMC6097425 DOI: 10.1039/c8md00151k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
Abstract
Unique to targeting the C-terminal domain of Hsp90 (C-Hsp90) is the ability to uncouple the cytotoxic and cytoprotective outcomes of Hsp90 modulation. After the identification of novobiocin as a C-Hsp90 interacting ligand a diverse gamut of novologues emerged, from which KU-32 and KU-596 exhibited strong neuroprotective activity. However, further development of these ligands is hampered by the difficulty to obtain structural information on their complexes with Hsp90. Using saturation transfer difference (STD) NMR spectroscopy, we found that the primary binding epitopes of KU-32 and KU596 map at the ring systems of the ligands and specifically the coumarin and biphenyl structures, respectively. Based on both relative and absolute STD effects, we identified KU-596 sites that can be explored to design novel third-generation novologues. In addition, chemical shift perturbations obtained by methyl-TROSY reveal that novologues bind at the cryptic, C-Hsp90 ATP-binding pocket and produce global, long-range structural rearrangements to dimeric Hsp90.
Collapse
Affiliation(s)
- Vasantha Kumar Mv
- Department of Chemistry , University of South Florida , Tampa , FL 33620 , USA .
| | - Radwan Ebna Noor
- Department of Chemistry , University of South Florida , Tampa , FL 33620 , USA .
| | - Rachel E Davis
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46545 , USA
| | - Zheng Zhang
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46545 , USA
| | - Edvinas Sipavicius
- Department of Chemistry , University of South Florida , Tampa , FL 33620 , USA .
| | - Dimitra Keramisanou
- Department of Chemistry , University of South Florida , Tampa , FL 33620 , USA .
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46545 , USA
| | - Ioannis Gelis
- Department of Chemistry , University of South Florida , Tampa , FL 33620 , USA .
| |
Collapse
|
14
|
Ferraro M, D’Annessa I, Moroni E, Morra G, Paladino A, Rinaldi S, Compostella F, Colombo G. Allosteric Modulators of HSP90 and HSP70: Dynamics Meets Function through Structure-Based Drug Design. J Med Chem 2018; 62:60-87. [DOI: 10.1021/acs.jmedchem.8b00825] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mariarosaria Ferraro
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Ilda D’Annessa
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | | | - Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Antonella Paladino
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini, 50, 20133 Milano, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
15
|
Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell. Nat Commun 2017; 8:398. [PMID: 28855508 PMCID: PMC5577305 DOI: 10.1038/s41467-017-00444-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 06/29/2017] [Indexed: 12/14/2022] Open
Abstract
Molecular chaperones are pivotal in folding and degradation of the cellular proteome but their impact on the conformational dynamics of near-native membrane proteins with disease relevance remains unknown. Here we report the effect of chaperone activity on the functional conformation of the temperature-sensitive mutant cystic fibrosis channel (∆F508-CFTR) at the plasma membrane and after reconstitution into phospholipid bilayer. Thermally induced unfolding at 37 °C and concomitant functional inactivation of ∆F508-CFTR are partially suppressed by constitutive activity of Hsc70 and Hsp90 chaperone/co-chaperone at the plasma membrane and post-endoplasmic reticulum compartments in vivo, and at single-molecule level in vitro, indicated by kinetic and thermodynamic remodeling of the mutant gating energetics toward its wild-type counterpart. Thus, molecular chaperones can contribute to functional maintenance of ∆F508-CFTR by reshaping the conformational energetics of its final fold, a mechanism with implication in the regulation of metastable ABC transporters and other plasma membrane proteins activity in health and diseases. The F508 deletion (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common CF causing mutation. Here the authors show that cytosolic chaperones shift the F508del channel conformation to the native fold by kinetic and thermodynamic remodelling of the gating energetics towards that of wild-type CTFR.
Collapse
|
16
|
D'Annessa I, Sattin S, Tao J, Pennati M, Sànchez-Martìn C, Moroni E, Rasola A, Zaffaroni N, Agard DA, Bernardi A, Colombo G. Design of Allosteric Stimulators of the Hsp90 ATPase as New Anticancer Leads. Chemistry 2017; 23:5188-5192. [PMID: 28207175 PMCID: PMC5927549 DOI: 10.1002/chem.201700169] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 01/23/2023]
Abstract
Allosteric compounds that stimulate Hsp90 adenosine triphosphatase (ATPase) activity were rationally designed, showing anticancer potencies in the low micromolar to nanomolar range. In parallel, the mode of action of these compounds was clarified and a quantitative model that links the dynamic ligand-protein cross-talk to observed cellular and in vitro activities was developed. The results support the potential of using dynamics-based approaches to develop original mechanism-based cancer therapeutics.
Collapse
Affiliation(s)
- Ilda D'Annessa
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco, 9, 20131, Milan, Italy
| | - Sara Sattin
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi, 19, 20133, Milan, Italy
| | - Jiahui Tao
- Howard Hughes Medical Institute and Dept. of Biochemistry & Biophysics, University of California, 600 16thStreet, San Francisco, CA, 94158, USA
| | - Marzia Pennati
- Dept. Experimental Oncology & Molecular Medicine, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo, 42, 20133, Milano, Italy
| | - Carlos Sànchez-Martìn
- Dipartimento di Scienze Biomediche-DSB, Università di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | | | - Andrea Rasola
- Dipartimento di Scienze Biomediche-DSB, Università di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Nadia Zaffaroni
- Dept. Experimental Oncology & Molecular Medicine, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo, 42, 20133, Milano, Italy
| | - David A Agard
- Howard Hughes Medical Institute and Dept. of Biochemistry & Biophysics, University of California, 600 16thStreet, San Francisco, CA, 94158, USA
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi, 19, 20133, Milan, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco, 9, 20131, Milan, Italy
| |
Collapse
|
17
|
Takahashi S, Suda Y, Nakamura T, Matsuoka K, Koshino H. Total Synthesis of Kehokorins A-E, Cytotoxic p-Terphenyls. J Org Chem 2017; 82:3159-3166. [PMID: 28267327 DOI: 10.1021/acs.joc.7b00147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper describes a general method for the synthesis of kehokorins A-E, novel cytotoxic p-terphenyls. 2,4,6-Trihydroxybenzaldehyde served as a common building block for preparation of the central aromatic ring. Construction of their p-terphenyl skeletons was achieved by a stepwise Suzuki-Miyaura coupling, whereas the phenyldibenzofuran moiety was built up by an intramolecular Ullmann reaction. Introduction of an l-rhamnose residue into partly protected kehokorin B was performed by the trichloroacetimidate method.
Collapse
Affiliation(s)
- Shunya Takahashi
- RIKEN Center for Sustainable Resource Science , Wako, Saitama 351-0198, Japan
| | - Yasuaki Suda
- RIKEN Center for Sustainable Resource Science , Wako, Saitama 351-0198, Japan.,Division of Material Science, Graduate School of Science and Engineering, Saitama University , Saitama 338-8570, Japan
| | - Takemichi Nakamura
- RIKEN Center for Sustainable Resource Science , Wako, Saitama 351-0198, Japan
| | - Koji Matsuoka
- Division of Material Science, Graduate School of Science and Engineering, Saitama University , Saitama 338-8570, Japan
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science , Wako, Saitama 351-0198, Japan
| |
Collapse
|