1
|
Koolath S, Murai Y, Suzuki T, Swamy MMM, Usuki S, Monde K. Stereochemistry of Sphingolipids in Ganglioside GM3 Enhances Recovery of Nervous Functionality. ACS Med Chem Lett 2023; 14:1237-1241. [PMID: 37736188 PMCID: PMC10510522 DOI: 10.1021/acsmedchemlett.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
GM3 is a simple monosialylated ganglioside (NeuAcα(2-3)Galβ(1-4)Glcβ1-1'-ceramide). Its aberrant expression in adipocytes is involved in a variety of physiological and pathological processes in diabetes mellitus and obesity. GM3 is exposed on the outer surface of cell membranes and is strongly associated with type 2 diabetes and insulin resistance. Exogenously added GM3 promotes neurite outgrowth in a variety of different neuroblastoma cell lines. Neurite outgrowth is a key process in the development of functional neuronal circuits and neuro-regeneration following nerve injury. Therefore, regulating GM3 levels in nerve tissues might be a potential treatment method for these disorders. Here, we demonstrate the comprehensive synthesis of stereoisomeric GM3s and compare their physicochemical properties with those of natural GM3 and diastereomers of sphingolipids in GM3 to examine the enhancement of biological activity. l-erythro-GM3 was confirmed to increase neurite outgrowth, providing valuable insights for potential neuro-regenerative treatments.
Collapse
Affiliation(s)
- Sajeer Koolath
- Graduate
School of Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Yuta Murai
- Graduate
School of Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
- Faculty
of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
- Division
of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Sapporo 060-8589, Japan
| | - Tomoya Suzuki
- Graduate
School of Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Mahadeva M. M. Swamy
- Graduate
School of Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
- Faculty
of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Seigo Usuki
- Lipid
Biofunction Section, Frontier Research Center for Advanced Material
and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Kenji Monde
- Graduate
School of Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
- Faculty
of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Abdelrasoul M, Yuyama K, Swamy MMM, Murai Y, Monde K. Stereochemistry-activity relationship of ceramide-induced exosome production to clear amyloid-β in Alzheimer's disease. Chirality 2023; 35:577-585. [PMID: 37055029 DOI: 10.1002/chir.23568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 04/15/2023]
Abstract
Stereochemistry has a substantial impact on the biological activity of various drugs. We investigated the role of stereochemistry of ceramides in inducing the production of exosomes, a type of extracellular vesicle, from neuronal cells, with a potential benefit in improving the clearance of amyloid-β (Aβ), a causal agent of Alzheimer's disease. A stereochemical library of diverse ceramides with different tail lengths was synthesized with the purpose of varying stereochemistry (D-erythro: DE, D-threo: DT, L-erythro: LE, L-threo: LT) and hydrophobic tail length (C6, C16, C18, C24). The exosome levels were quantified using TIM4-based exosome enzyme-linked immunosorbent assay after concentrating the conditioned medium using centrifugal filter devices. The results revealed a pivotal role of stereochemistry in determining the biological activity of ceramide stereoisomers, with the superiority of those based on DE and DT stereochemistry with C16 and C18 tails, which demonstrated significantly higher exosome production, without a significant change in the particle size of the released exosomes. In transwell experiments with Aβ-expressed neuronal and microglial cells, DE- and DT-ceramides with C16 and C18 tails significantly decreased extracellular Aβ levels. The results reported here are promising in the design of non-classic therapies for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Mariam Abdelrasoul
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Kohei Yuyama
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Mahadeva M M Swamy
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yuta Murai
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kenji Monde
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Lawanprasert A, Sloand JN, Vargas MG, Singh H, Eldor T, Miller MA, Pimcharoen S, Wang J, Leighow SM, Pritchard JR, Dokholyan NV, Medina SH. Deciphering the Mechanistic Basis for Perfluoroalkyl-Protein Interactions. Chembiochem 2023; 24:e202300159. [PMID: 36943393 PMCID: PMC10364144 DOI: 10.1002/cbic.202300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/23/2023]
Abstract
Although rarely used in nature, fluorine has emerged as an important elemental ingredient in the design of proteins with altered folding, stability, oligomerization propensities, and bioactivity. Adding to the molecular modification toolbox, here we report the ability of privileged perfluorinated amphiphiles to noncovalently decorate proteins to alter their conformational plasticity and potentiate their dispersion into fluorous phases. Employing a complementary suite of biophysical, in-silico and in-vitro approaches, we establish structure-activity relationships defining these phenomena and investigate their impact on protein structural dynamics and intracellular trafficking. Notably, we show that the lead compound, perfluorononanoic acid, is 106 times more potent in inducing non-native protein secondary structure in select proteins than is the well-known helix inducer trifluoroethanol, and also significantly enhances the cellular uptake of complexed proteins. These findings could advance the rational design of fluorinated proteins, inform on potential modes of toxicity for perfluoroalkyl substances, and guide the development of fluorine-modified biologics with desirable functional properties for drug discovery and delivery applications.
Collapse
Affiliation(s)
- Atip Lawanprasert
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Janna N. Sloand
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Mariangely González Vargas
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Department of Industrial Engineering, University of Puerto Rico, Mayagüez, Puerto Rico 00682
| | - Harminder Singh
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Tomer Eldor
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Michael A. Miller
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Sopida Pimcharoen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA, 17033
| | - Scott M. Leighow
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Justin R. Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA, 16802
| | - Nikolay V. Dokholyan
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA, 17033
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, PA, USA, 17033
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA, 16802
| | - Scott H. Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA, 16802
| |
Collapse
|
4
|
Ikushiro H, Murakami T, Takahashi A, Katayama A, Sawai T, Goto H, Koolath S, Murai Y, Monde K, Miyahara I, Kamiya N, Yano T. Structural insights into the substrate recognition of serine palmitoyltransferase from Sphingobacterium multivorum. J Biol Chem 2023; 299:104684. [PMID: 37030501 DOI: 10.1016/j.jbc.2023.104684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023] Open
Abstract
Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis, which catalyzes the pyridoxal-5'-phosphate-dependent decarboxylative condensation reaction of L-serine (L-Ser) and palmitoyl-CoA (PalCoA) to form 3-ketodihydrosphingosine called long chain base (LCB). SPT is also able to metabolize L-alanine (L-Ala) and glycine (Gly), albeit with much lower efficiency. Human SPT is a membrane-bound large protein complex containing SPTLC1/SPTLC2 heterodimer as the core subunits, and it is known that mutations of the SPTLC1/SPTLC2 genes increase the formation of deoxy-type of LCBs derived from L-Ala and Gly to cause some neurodegenerative diseases. In order to study the substrate recognition of SPT, we examined the reactivity of Sphingobacterium multivorum SPT on various amino acids in the presence of PalCoA. The S. multivorum SPT could convert not only L-Ala and Gly but also L-homoserine, in addition to L-Ser, into the corresponding LCBs. Furthermore, we obtained high-quality crystals of the ligand-free form and the binary complexes with a series of amino acids, including a nonproductive amino acid, L-threonine, and determined the structures at 1.40-1.55 Å resolutions. The S. multivorum SPT accommodated various amino acid substrates through subtle rearrangements of the active-site amino acid residues and water molecules. It was also suggested that non-active-site residues mutated in the human SPT genes might indirectly influence the substrate specificity by affecting the hydrogen-bonding networks involving the bound substrate, water molecules, and amino acid residues in the active site of this enzyme. Collectively, our results highlight SPT structural features affecting substrate specificity for this stage of sphingolipid biosynthesis.
Collapse
Affiliation(s)
- Hiroko Ikushiro
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Taiki Murakami
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Aya Takahashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Asuka Katayama
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Taiki Sawai
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Haruna Goto
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Sajeer Koolath
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita21 Nishi11, Sapporo, Hokkaido 001-0021, JAPAN
| | - Yuta Murai
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita21 Nishi11, Sapporo, Hokkaido 001-0021, JAPAN
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita21 Nishi11, Sapporo, Hokkaido 001-0021, JAPAN
| | - Ikuko Miyahara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Nobuo Kamiya
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan; Research Center for Artificial Photosynthesis, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| |
Collapse
|
5
|
Murai Y, Yuyama K, Mikami D, Igarashi Y, Monde K. Penta-deuterium-labeled 4E, 8Z-sphingadienine for rapid analysis in sphingolipidomics study. Chem Phys Lipids 2022; 245:105202. [PMID: 35337796 DOI: 10.1016/j.chemphyslip.2022.105202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/01/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022]
Abstract
The use of deuterium-incorporated bioactive compounds is an efficient method for tracing their metabolic fate and for quantitative analysis by mass spectrometry without complicated HPLC separation even if their amounts are extremely small. Plant sphingolipids and their metabolites, which have C4, 8-olefins on a common backbone as a sphingoid base, show unique and fascinating bioactivities compared to those of sphingolipids in mammals. However, the functional and metabolic mechanisms of exogenous plant sphingolipids have not been elucidated due to the difficulty in distinguishing exogenous sphingolipids from endogenous sphingolipids having the same polarity and same molecular weight by mass spectrometric analysis. Their roles might be elucidated by the use of deuterated probes with original biological and physicochemical properties. In this study, we designed (2S,3R,4E,8Z)-2-aminooctadeca-4,8-diene-17,17,18,18,18-d5-1,3-diol (penta-deuterium-labeled 4E, 8Z-sphingadienine) as a tracer for exogenous metabolic studies. In addition, the sphingadienine was confirmed to be metabolized in HEK293 cells and showed distinct peaks in mass spectrometric analysis.
Collapse
Affiliation(s)
- Yuta Murai
- Graduate School of Life Science, Kita 21 Nishi 11, Sapporo 001-0021, Japan; Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan.
| | - Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Daisuke Mikami
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Yasuyuki Igarashi
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Kenji Monde
- Graduate School of Life Science, Kita 21 Nishi 11, Sapporo 001-0021, Japan; Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan.
| |
Collapse
|
6
|
Murai Y, Sekiguchi A, Hirakawa T, Usuki S, Igarashi Y, Monde K. Evaluation of chiral N,N-dimethyl-sphingosine for the interaction between nerve growth factor and tropomyosin receptor kinase A. Chirality 2022; 34:807-812. [PMID: 35297105 DOI: 10.1002/chir.23433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 11/09/2022]
Abstract
Neuropathic pain is an unbearable condition caused by nervous system damage. As distinct acute pain, neuropathic pain is chronic, and it severely influences quality of life. N,N-Dimethyl-d-erythro-sphingosine (DMS), a neuropathic pain inducer, is metabolited de novo from sphingosine. In a recent study, metabolomics showed an increased concentration level of DMS in the spinal cord in mice with neuropathic pain. Nerve growth factor (NGF) is one of the peripheral nervous system targeted pain factors that interact with tropomyosin receptor kinase A (trkA). On the basis of this information, we were interested in the possibility that DMS may induce neuropathic pain-like behavior through an increase of NGF activity. In this study, we showed that DMS can enhance the binding of NGF to trkA, followed by neurite outgrowth of epidermal nerve fibers and phosphorylation of trkA. In addition, a stereoisomer, N,N-dimethyl-l-erythro-sphingosine, did not any show such biological activities. The results suggest that DMS can enhance the binding of NGF to trkA and that its stereochemistry is an essential factor for exhibiting its activity.
Collapse
Affiliation(s)
- Yuta Murai
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Akihiro Sekiguchi
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Taeko Hirakawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Seigo Usuki
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Igarashi
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kenji Monde
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Bassanini I, Galli C, Ferrandi EE, Vallone F, Andolfo A, Romeo S. Perfluorinated Probes for Noncovalent Protein Recognition and Isolation. Bioconjug Chem 2020; 31:513-519. [PMID: 31927891 PMCID: PMC7993633 DOI: 10.1021/acs.bioconjchem.9b00846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Perfluorinated organic compounds (PFCs) are nontoxic, biocompatible, bioavailable, and bioorthogonal species which possess the unique ability to segregate away from both polar and nonpolar solvents producing a compact fluorophilic phase. Traditional techniques of fluorous chemical proteomics are generally applied to enrich biological samples in target protein(s) exploiting this property of PFCs to build fluorinated probes able to covalently bind to protein ensembles and being selectively extracted by fluorophilic solvents. Aiming at building a strategy able to avoid irreversible modification of the analyzed biosystem, a novel fully noncovalent probe is presented as an enabling tool for the recognition and isolation of biological protein(s). In our strategy, both the fluorophilic extraction and the biorecognition of a selected protein successfully occur via the establishment of reversible but selective interactions.
Collapse
Affiliation(s)
- Ivan Bassanini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy
| | - Corinna Galli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy
| | - Erica E Ferrandi
- Istituto di Chimica del Riconoscimento Molecolare - Consiglio Nazionale delle Ricerche, 20131 Milano, Italy
| | - Fabiana Vallone
- ProMiFa, Protein Microsequencing Facility, Ospedale San Raffaele, 20132 Milano, Italy
| | - Annapaola Andolfo
- ProMiFa, Protein Microsequencing Facility, Ospedale San Raffaele, 20132 Milano, Italy
| | - Sergio Romeo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
8
|
Koolath S, Murai Y, Suga Y, Monde K. Chiral combinatorial preparation and biological evaluation of unique ceramides for inhibition of sphingomyelin synthase. Chirality 2020; 32:308-313. [DOI: 10.1002/chir.23179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Sajeer Koolath
- Graduate School of Life ScienceHokkaido University Sapporo Japan
| | - Yuta Murai
- Graduate School of Life ScienceHokkaido University Sapporo Japan
- Faculty of Advanced Life ScienceHokkaido University Sapporo Japan
| | - Yoshiko Suga
- Faculty of Advanced Life ScienceHokkaido University Sapporo Japan
| | - Kenji Monde
- Graduate School of Life ScienceHokkaido University Sapporo Japan
- Faculty of Advanced Life ScienceHokkaido University Sapporo Japan
| |
Collapse
|