1
|
Lakshman MK, Malinchak CT, Shank N, Neary MC, Stahl L. Purinyl N-directed aroylation of 6-arylpurine ribo- and 2'-deoxyribonucleosides, and mechanistic insights. Org Biomol Chem 2024; 22:6718-6726. [PMID: 38916551 DOI: 10.1039/d4ob00689e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The purinyl ring contains four embedded nitrogen atoms of varying basicities. Selective utilization of these ring nitrogen atoms can lead to relatively facile remote functionalization, yielding modified purinyl motifs that are otherwise not easily obtained. Herein, we report previously undescribed N-directed aroylation of 6-arylpurine ribo and the more labile 2'-deoxyribonucleosides. Kinetic isotope analysis as well as reaction with a well-defined dimeric, palladated 9-benzyl 6-arylpurine provided evidence for N-directed cyclometallation as a key step, with a plausible rate-limiting C-H bond cleavage. Radical inhibition experiments indicate the likely intermediacy of aroyl radicals. The chemistry surmounts difficulties often posed in the functionalization of polynitrogenated and polyoxygenated nucleosidic structures that possess complex reactivities and a labile glycosidic bond that is more sensitive in the 2'-deoxy substrates.
Collapse
Affiliation(s)
- Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Casina T Malinchak
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Nathaniel Shank
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, GA 31419, USA
| | - Michelle C Neary
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA
| | - Lothar Stahl
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND 58202, USA
| |
Collapse
|
2
|
Cho EH, Akhtar MS, Aslam M, Thombal RS, Li X, Shim JJ, Lee YR. Transition metal-catalyzed regioselective functionalization of carbazoles and indolines with maleimides. Org Biomol Chem 2022; 20:6776-6783. [PMID: 35959713 DOI: 10.1039/d2ob01077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The directing group-assisted regioselective C-H activation of carbazoles and indolines is achieved via transition metal-catalyzed reactions. This C-H functionalization protocol provides a rapid approach to install diversely functionalized succinimide groups at the C-1 position of the carbazole moiety. In addition, this protocol demonstrates the intrinsic reactivity of indolines in providing C-2 succinimide-substituted indoles via cascade direct oxidation and C-H functionalization. This protocol also provides C-7 succinimide-substituted indolines under mild reaction conditions. The features of this reaction include a wide substrate scope and excellent regioselectivity for the installation of the succinimide moiety on biologically interesting molecules.
Collapse
Affiliation(s)
- Eun Hee Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Mohammad Aslam
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Raju S Thombal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Xin Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
3
|
1-(4-Fluorobenzoyl)-9H-carbazole. MOLBANK 2022. [DOI: 10.3390/m1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
1-(4-Fluorobenzoyl)-9H-carbazole (1) was synthesized, starting from 9H-carbazole and 4-fluorobenzonitrile, by Friedel–Crafts acylation, using boron trichloride to direct the substitution in 1-position. Single-crystal X-ray diffraction analysis unambiguously revealed the molecular structure of 1.
Collapse
|
4
|
Suzuki H, Kawai Y, Takemura Y, Matsuda T. Rhodium-catalysed decarbonylative C(sp 2)-H alkylation of indolines with alkyl carboxylic acids and carboxylic anhydrides under redox-neutral conditions. Org Biomol Chem 2022; 20:2808-2812. [PMID: 35318479 DOI: 10.1039/d2ob00249c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We developed a rhodium-catalysed decarbonylative C(sp2)-H alkylation method for indolines. This reaction facilitates the use of alkyl carboxylic acids and their anhydrides as a cheap, abundant and non-toxic alkyl source under redox-neutral conditions, featuring the introduction of a primary alkyl chain, which cannot be addressed by previous radical-mediated decarboxylative reaction. Through a mechanistic investigation, we revealed that an initially formed C-7 acylated indoline was transformed into the corresponding alkylated indoline via a decarbonylation process.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuya Kawai
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yosuke Takemura
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
5
|
Prince, Kumar S, Lalji RSK, Gupta M, Kumar P, Kumar R, Singh BK. Sustainable C–H activation approach for palladium-catalyzed, regioselective functionalization of 1-methyl-3-phenyl quinoxaline-2(1 H)-ones in water. Org Biomol Chem 2022; 20:8944-8951. [DOI: 10.1039/d2ob01451c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An environment-friendly approach for regioselective acylation of 1-methyl-3-phenyl quinoxaline-2(1H)-ones was developed using water as a solvent. The protocol exhibits a wide substrate scope and employs commercially available, non-toxic acyl surrogates.
Collapse
Affiliation(s)
- Prince
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Department of Chemistry, Nanak Chand Anglo Sanskrit College, Meerut, Uttar Pradesh-250001, India
| | - Sandeep Kumar
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Ram Sunil Kumar Lalji
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Department of Chemistry, Kirori-Mal College, Delhi University, Delhi-110007, India
| | - Mohit Gupta
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Department of Chemistry, L.N.M.S. College, Birpur, Supaul, Bihar-854340, India
| | - Prashant Kumar
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Department of Chemistry, SRM University, Delhi-NCR Sonepat, Haryana-131029, India
| | - Ravindra Kumar
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh-226031, India
| | - Brajendra K. Singh
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
6
|
Xiao EK, Wu XT, Ma F, Miao LW, Jiang YJ, Chen P. Iron-catalyzed alkylation of carbazole derivatives via hydroarylation of styrenes. Chem Commun (Camb) 2021; 57:7148-7151. [PMID: 34184010 DOI: 10.1039/d1cc02449c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first direct and selective 3,6-di-alkylation of carbazoles via iron-catalyzed hydroarylation of styrenes is demonstrated. This simple, general and efficient method could deliver a wide range of di-benzyl-carbazoles with high chemo- and regio-selectivity at room temperature in up to 96% yield with no need for a noble-metal catalyst, directing group or additives.
Collapse
Affiliation(s)
- En-Kai Xiao
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, P. R. China.
| | - Xian-Tao Wu
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, P. R. China.
| | - Feng Ma
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, P. R. China.
| | - Le-Wei Miao
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, P. R. China.
| | - Yi-Jun Jiang
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, P. R. China.
| | - Peng Chen
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, P. R. China.
| |
Collapse
|
7
|
Wu XT, Xiao EK, Ma F, Yin J, Wang J, Chen P, Jiang YJ. Substrate-Controlled Regiodivergent Synthesis of Fluoroacylated Carbazoles via Friedel-Crafts Acylation. J Org Chem 2021; 86:6734-6743. [PMID: 33852307 DOI: 10.1021/acs.joc.1c00473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A general, efficient, and substrate-controlled regiodivergent trifluoroacetylation of carbazoles has been developed through Friedel-Crafts acylation. This strategy was applicable to a wide scope of readily available substituted carbazoles at air atmosphere without using a metal catalyst, affording the corresponding trifluoroacetylated carbazoles in up to 99% yield. The divergency of the products and the orientation rules have been illustrated based on different substituents on carbazole rings. This method could also be extended to the synthesis of chlorodifluoroacetylated and pentafluoropropionylated carbazoles, which have been achieved for the first time.
Collapse
Affiliation(s)
- Xian-Tao Wu
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - En-Kai Xiao
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Feng Ma
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jin Yin
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Peng Chen
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yi-Jun Jiang
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| |
Collapse
|
8
|
Carvalho RL, Almeida RG, Murali K, Machado LA, Pedrosa LF, Dolui P, Maiti D, da Silva Júnior EN. Removal and modification of directing groups used in metal-catalyzed C–H functionalization: the magical step of conversion into ‘conventional’ functional groups. Org Biomol Chem 2021; 19:525-547. [DOI: 10.1039/d0ob02232b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature review is focused on recent approaches for removing versatile directing groups.
Collapse
Affiliation(s)
- Renato L. Carvalho
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Renata G. Almeida
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Karunanidhi Murali
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Luana A. Machado
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | | | - Pravas Dolui
- Department of Chemistry
- IIT Bombay
- Mumbai 400076
- India
| | | | | |
Collapse
|
9
|
Maiti S, Mandal T, Dash BP, Dash J. Site-Selective Aerobic C–H Monoacylation of Carbazoles Using Palladium Catalysis. J Org Chem 2020; 86:1396-1407. [DOI: 10.1021/acs.joc.0c01746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Subhadip Maiti
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Tirtha Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Barada Prasanna Dash
- Department of Chemistry, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
10
|
Kumar P, Dutta S, Kumar S, Bahadur V, Van der Eycken EV, Vimaleswaran KS, Parmar VS, Singh BK. Aldehydes: magnificent acyl equivalents for direct acylation. Org Biomol Chem 2020; 18:7987-8033. [PMID: 33000845 DOI: 10.1039/d0ob01458c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
From the viewpoint of meeting the current green chemistry challenges in chemical synthesis, there is a need to disseminate how the cocktail of acylation and activation can play a pivotal role in affording bioactive acylated products comprising substituted ketone motifs in fewer reaction steps, with higher atom-economy and improved selectivity. In recent years, a significant number of articles employing the title compounds "aldehydes" as magnificent acylation surrogates which are less toxic and widely applicable have been published. This review sheds light on the compounds use for selective acylation of arene, heteroarene and alkyl (sp3, sp2 and sp) C-H bonds by proficient utilization of the C-H activation strategy. Critical insights into selective acylation of diverse moieties for the synthesis of bioactive compounds are presented in this review that will enable academic and industrial researchers to understand the mechanistic aspects involved and fruitfully employ these strategies in designing novel molecules.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Chemistry, SRM University Delhi-NCR, Sonepat, Haryana 131029, India. and Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Sriparna Dutta
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Sandeep Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Vijay Bahadur
- Department of Chemistry, SRM University Delhi-NCR, Sonepat, Haryana 131029, India. and Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium and Peoples' Friendship University of Russia, (RUDN University) Miklukho-Maklaya, street 6, Moscow, 117198, Russia
| | | | - Virinder S Parmar
- Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, 1638 Bedford Avenue, Brooklyn, NY 11225, USA
| | | |
Collapse
|
11
|
Pd(II)-Catalyzed C-H Acylation of (Hetero)arenes-Recent Advances. Molecules 2020; 25:molecules25143247. [PMID: 32708781 PMCID: PMC7397280 DOI: 10.3390/molecules25143247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Di(hetero)aryl ketones are important motifs present in natural products, pharmaceuticals or agrochemicals. In recent years, Pd(II)-catalyzed acylation of (hetero)arenes in the presence of an oxidant has emerged as a catalytic alternative to classical acylation methods, reducing the production of toxic metal waste. Different directing groups and acyl sources are being studied for this purpose, although further development is required to face mainly selectivity problems in order to be applied in the synthesis of more complex molecules. Selected recent developments and applications are covered in this review.
Collapse
|
12
|
Santiago C, Rubio I, Sotomayor N, Lete E. Selective PdII
-Catalyzed Acylation of Pyrrole with Aldehydes. Application to the Synthesis of Celastramycin Analogues and Tolmetin. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Carlos Santiago
- Departamento de Química Orgánica II; Facultad de Ciencia y Tecnología; Universidad del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU; Apdo. 644. 48080 Bilbao Spain
| | - Ibon Rubio
- Departamento de Química Orgánica II; Facultad de Ciencia y Tecnología; Universidad del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU; Apdo. 644. 48080 Bilbao Spain
| | - Nuria Sotomayor
- Departamento de Química Orgánica II; Facultad de Ciencia y Tecnología; Universidad del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU; Apdo. 644. 48080 Bilbao Spain
| | - Esther Lete
- Departamento de Química Orgánica II; Facultad de Ciencia y Tecnología; Universidad del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU; Apdo. 644. 48080 Bilbao Spain
| |
Collapse
|
13
|
Kshirsagar UA, Waghmare DS, Tambe SD. The regioselective coupling of 2-arylquinazolinone C–H with aldehydes and benzyl alcohols under oxidative conditions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03721d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Palladium catalyzed direct and regioselective cross dehydrogenative coupling (CDC) of 2-arylquinazoline-4-one endowed with a quinazolinone nucleus as an inherent directing group with aldehyde and oxidative coupling with benzyl alcohol was developed.
Collapse
Affiliation(s)
- Umesh A. Kshirsagar
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
- Department of Chemistry
| | | | | |
Collapse
|
14
|
Chu JH, Chiang MF, Li CW, Su ZH, Lo SC, Wu MJ. Palladium-Catalyzed Late-Stage ortho-C–H Bond Aroylation of Anilines Using 4-Methoxy-2-pyridinyl as a Removable Directing Group. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jean-Ho Chu
- Department of Applied Science, National Taitung University, Taitung 95092, Taiwan
| | - Meng-Fan Chiang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chin-Wei Li
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Zhe-Hong Su
- Department of Applied Science, National Taitung University, Taitung 95092, Taiwan
| | - Shao-Chi Lo
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Ming-Jung Wu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
15
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
16
|
Sharma UK, Gemoets HPL, Schröder F, Noël T, Van der Eycken EV. Merger of Visible-Light Photoredox Catalysis and C–H Activation for the Room-Temperature C-2 Acylation of Indoles in Batch and Flow. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00840] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Upendra K. Sharma
- Laboratory
for Organic and Microwave-Assisted Chemistry (LOMAC), Department of
Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Hannes P. L. Gemoets
- Department
of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process
Technology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Felix Schröder
- Laboratory
for Organic and Microwave-Assisted Chemistry (LOMAC), Department of
Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Timothy Noël
- Department
of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process
Technology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Erik V. Van der Eycken
- Laboratory
for Organic and Microwave-Assisted Chemistry (LOMAC), Department of
Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| |
Collapse
|
17
|
Manna MK, Bairy G, Jana R. Dual visible-light photoredox and palladium(ii) catalysis for dehydrogenative C2-acylation of indoles at room temperature. Org Biomol Chem 2017; 15:5899-5903. [DOI: 10.1039/c7ob01418j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A mild protocol for direct C2-acylation of indoles with aldehydes is reported at room temperature through the merger of visible light photoredox and palladium(ii) catalysis. Late-stage acylation of tryptophan and selective mono-acylation of carbazoles are also demonstrated.
Collapse
Affiliation(s)
- Manash Kumar Manna
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Gurupada Bairy
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
18
|
Deng H, Li H, Zhang W, Wang L. RhIII-Catalyzed site-selective amidation with nitrone as a traceless directing group: an approach to functionalized arylaldehydes. Chem Commun (Camb) 2017; 53:10322-10325. [DOI: 10.1039/c7cc05297a] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A unique RhIII-catalyzed C–H amidation of nitrones with 1,4,2-dioxazol-5-ones has been developed, providing a new approach to functionalized arylaldehydes.
Collapse
Affiliation(s)
- Hong Deng
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Hongji Li
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Wenge Zhang
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Lei Wang
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|