1
|
Khamaru K, Pal U, Shee S, Lo R, Seal K, Ghosh P, Maiti NC, Banerji B. Metal-Free Activation of Molecular Oxygen by Quaternary Ammonium-Based Ionic Liquid: A Detail Mechanistic Study. J Am Chem Soc 2024; 146:6912-6925. [PMID: 38421821 DOI: 10.1021/jacs.3c14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Most oxidation processes in common organic synthesis and chemical biology require transition metal catalysts or metalloenzymes. Herein, we report a detailed mechanistic study of a metal-free oxygen (O2) activation protocol on benzylamine/alcohols using simple quaternary alkylammonium-based ionic liquids to produce products such as amide, aldehyde, imine, and in some cases, even aromatized products. NMR and various control experiments established the product formation and reaction mechanism, which involved the conversion of molecular oxygen into a hydroperoxyl radical via a proton-coupled electron transfer process. Detection of hydrogen peroxide in the reaction medium using colorimetric analysis supported the proposed mechanism of oxygen activation. Furthermore, first-principles calculations using density functional theory (DFT) revealed that reaction coordinates and transition state spin densities have a unique spin conversion of triplet oxygen leading to formation of singlet products via a minimum energy crossing point. In addition to DFT, domain-based local pair natural orbital coupled cluster, (DLPNO-CCSD(T)), and complete active space self-consistent field, CASSCF(20,14) methods complemented the above findings. Partial density of states analysis showed stabilization of π* orbital of oxygen in the presence of ionic liquid, making it susceptible to hydrogen abstraction in a mild, metal-free condition. Inductively coupled plasma atomic emission spectroscopic (ICP-AES) analysis of reactant and ionic liquids clearly showed the absence of any significant transition metal contamination. The current results described the origin of O2 activation within the context of molecular orbital (MO) theory and opened up a new avenue for the use of ionic liquids as inexpensive, multifunctional and high-performance alternative to metal-based catalysts for O2 activation.
Collapse
Affiliation(s)
| | - Uttam Pal
- CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Subhankar Shee
- CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Kaushik Seal
- CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Prasanta Ghosh
- Department of Chemistry, Ramakrishna Mission Residential College (Autonomous), Narendrapur, Kolkata 700103, India
| | - Nakul Chandra Maiti
- CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Kolkata 700032, India
| | - Biswadip Banerji
- CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Kolkata 700032, India
| |
Collapse
|
2
|
Bhaskaran RP, Nayak KH, Sreelekha MK, Babu BP. Progress in copper-catalysed/mediated intramolecular dehydrogenative coupling. Org Biomol Chem 2023; 21:237-251. [PMID: 36448561 DOI: 10.1039/d2ob01796b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transition metal-catalysed C-H functionalization reactions are one of the most efficient synthetic methodologies to construct carbon-carbon and carbon-heteroatom bonds. The initial developments in the field were largely dominated by expensive transition metal catalysts. However, in the past decade, the focus of the catalyst shifted to first-row transition metals and copper catalysis contributed significantly. Abundant, cost-effective, and less toxic copper catalysts are an ideal green alternative to palladium and similar metals. The intramolecular dehydrogenative coupling itself developed as a prominent area of focus as the strategy straightaway affords complex polycyclic scaffolds in one pot. Regioselective activation of inert C-H bonds were made possible with copper catalysts and interestingly, oxygen served as the terminal oxidant in most of the cases. In the present review the focus is on the intramolecular dehydrogenative coupling reactions between carbon-hydrogen and heteroatom-hydrogen bonds to afford carbon-carbon and carbon-hetero atom bonds, catalysed/mediated by copper salts. Though the intermolecular dehydrogenative coupling reactions of copper have already been reviewed more than once, to the best of our knowledge this is the first comprehensive account of copper-based intramolecular dehydrogenative coupling.
Collapse
Affiliation(s)
- Rasmi P Bhaskaran
- Department of Chemistry National Institute of Technology Karnataka Surathkal, Mangalore, India - 575025.
| | - Kalinga H Nayak
- Department of Chemistry National Institute of Technology Karnataka Surathkal, Mangalore, India - 575025.
| | - Mariswamy K Sreelekha
- Department of Chemistry National Institute of Technology Karnataka Surathkal, Mangalore, India - 575025.
| | - Beneesh P Babu
- Department of Chemistry National Institute of Technology Karnataka Surathkal, Mangalore, India - 575025.
| |
Collapse
|
3
|
Kusaka S, Ohmura T, Suginome M. Iridium-Catalyzed Enantioselective Intramolecular Cross-Dehydrogenative Coupling of Alkyl Aryl Ethers Giving Enantioenriched 2,3-Dihydrobenzofurans. CHEM LETT 2022. [DOI: 10.1246/cl.220129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Satoshi Kusaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Toshimichi Ohmura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
4
|
Tong Z, Peng X, Tang Z, Yang W, Deng W, Yin SF, Kambe N, Qiu R. DTBP-mediated cross-dehydrogenative coupling of 3-aryl benzofuran-2(3 H)-ones with toluenes/phenols for all-carbon quaternary centers. RSC Adv 2022; 12:35215-35220. [DOI: 10.1039/d2ra06231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
We have developed a transition-metal free protocol for efficient cross-dehydrogenative coupling of 3-aryl benzofuran-2(3H)-ones and toluenes/phenols using DTBP as an oxidant.
Collapse
Affiliation(s)
- Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xinju Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhi Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Weijun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wei Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
5
|
Affiliation(s)
- Jiarong Shi
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Lianggui Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| |
Collapse
|
6
|
Chen D, Du W, Yang X, Liu T. Domino Synthetic Strategy for Tetrahydrothiopyran Derivatives from Benzaldehydes, 2-Acetylfuran/2-Acetylthiophene, and Sodium Sulfide. J Org Chem 2020; 85:9088-9095. [PMID: 32530280 DOI: 10.1021/acs.joc.0c01006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel domino reaction from benzaldehydes and 2-acetylfuran/2-acetylthiophene with sodium sulfide was developed to synthesize a series of tetrahydrothiopyran (THTP) derivatives. The reaction proceeded well to construct a tetrahydrothiopyran ring and five new bonds in one step. A mechanism is proposed, involving a stepwise Aldol/double Michael addition/Aldol (AMMA) reaction cascade. In this transformation, sodium sulfide acts as a nucleophile and base. This method is characterized by transition-metal-free, commercially available starting materials and mild reaction conditions.
Collapse
Affiliation(s)
- Dongdong Chen
- Department of Chemistry & Chemical Engineering, Lvliang University, Lishi 033001, P. R. China
| | - Weixia Du
- Department of Chemistry & Chemical Engineering, Lvliang University, Lishi 033001, P. R. China
| | - Xufeng Yang
- Department of Chemistry & Chemical Engineering, Lvliang University, Lishi 033001, P. R. China
| | - Tao Liu
- Department of Chemistry & Chemical Engineering, Lvliang University, Lishi 033001, P. R. China
| |
Collapse
|
7
|
Bosque I, Chinchilla R, Gonzalez-Gomez JC, Guijarro D, Alonso F. Cross-dehydrogenative coupling involving benzylic and allylic C–H bonds. Org Chem Front 2020. [DOI: 10.1039/d0qo00587h] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzylic and allylic C–H bonds are coupled with C(sp)–H, C(sp2)–H and C(sp3)–H bonds in a straightforward and high atom-economic manner.
Collapse
Affiliation(s)
- Irene Bosque
- Instituto de Síntesis Orgánica and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| | - Rafael Chinchilla
- Instituto de Síntesis Orgánica and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| | - Jose C. Gonzalez-Gomez
- Instituto de Síntesis Orgánica and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| | - David Guijarro
- Instituto de Síntesis Orgánica and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| | - Francisco Alonso
- Instituto de Síntesis Orgánica and Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Alicante
- 03080 Alicante
- Spain
| |
Collapse
|
8
|
Gorman RM, Hurst TE, Petersen WF, Taylor RJ. A copper(II)-mediated radical cross-dehydrogenative coupling/sulfinic acid elimination approach to 2-quinolones. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Tang Z, Liu Z, Tong Z, Xu Z, Au CT, Qiu R, Kambe N. Cu-Catalyzed Cross-Dehydrogenative Coupling of Heteroaryl C(sp2)–H and Tertiary C(sp3)–H Bonds for the Construction of All-Carbon Triaryl Quaternary Centers. Org Lett 2019; 21:5152-5156. [DOI: 10.1021/acs.orglett.9b01755] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhi Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Zhili Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Zhihui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Chak-Tong Au
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P.R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1472] [Impact Index Per Article: 245.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
11
|
Donald JR, Taylor RJK, Petersen WF. Low-Temperature, Transition-Metal-Free Cross-Dehydrogenative Coupling Protocol for the Synthesis of 3,3-Disubstituted Oxindoles. J Org Chem 2017; 82:11288-11294. [PMID: 28926705 DOI: 10.1021/acs.joc.7b02085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new low-temperature procedure for the synthesis of 3,3-disubstituted 2-oxindoles via cross-dehydrogenative coupling (CDC) is reported. The use of a strong, nonreversible base in these reactions has been found to effect a dramatic drop in reaction temperature (to room temperature) relative to the current state-of-the-art (>100 °C) procedure. When employing iodine as an "oxidant", new evidence suggests that this transformation may occur via a transiently stable iodinated intermediate rather than by direct single-electron oxidation.
Collapse
Affiliation(s)
- James R Donald
- Department of Chemistry, University of York , Heslington, York YO10 5DD, U.K
| | - Richard J K Taylor
- Department of Chemistry, University of York , Heslington, York YO10 5DD, U.K
| | - Wade F Petersen
- Department of Chemistry, University of York , Heslington, York YO10 5DD, U.K
| |
Collapse
|