1
|
Schramm S, Weiß D. Bioluminescence - The Vibrant Glow of Nature and its Chemical Mechanisms. Chembiochem 2024; 25:e202400106. [PMID: 38469601 DOI: 10.1002/cbic.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Bioluminescence, the mesmerizing natural phenomenon where living organisms produce light through chemical reactions, has long captivated scientists and laypersons alike, offering a rich tapestry of insights into biological function, ecology, evolution as well as the underlying chemistry. This comprehensive introductory review systematically explores the phenomenon of bioluminescence, addressing its historical context, geographic dispersion, and ecological significance with a focus on their chemical mechanisms. Our examination begins with terrestrial bioluminescence, discussing organisms from different habitats. We analyze thefireflies of Central Europe's meadows and the fungi in the Atlantic rainforest of Brazil. Additionally, we inspect bioluminescent species in New Zealand, specifically river-dwelling snails and mosquito larvae found in Waitomo Caves. Our exploration concludes in the Siberian Steppes, highlighting the area's luminescent insects and annelids. Transitioning to the marine realm, the second part of this review examines marine bioluminescent organisms. We explore this phenomenon in deep-sea jellyfish and their role in the ecosystem. We then move to Toyama Bay, Japan, where seasonal bioluminescence of dinoflagellates and ostracods present a unique case study. We also delve into the bacterial world, discussing how bioluminescent bacteria contribute to symbiotic relationships. For each organism, we contextualize its bioluminescence, providing details about its discovery, ecological function, and geographical distribution. A special focus lies on the examination of the underlying chemical mechanisms that enables these biological light displays. Concluding this review, we present a series of practical bioluminescence and chemiluminescence experiments, providing a resource for educational demonstrations and student research projects. Our goal with this review is to provide a summary of bioluminescence across the diverse ecological contexts, contributing to the broader understanding of this unique biological phenomenon and its chemical mechanisms serving researchers new to the field, educators and students alike.
Collapse
Affiliation(s)
- Stefan Schramm
- University of Applied Sciences Dresden (HTW Dresden), Friedrich-List-Platz 1, 01069, Dresden, Germany
| | - Dieter Weiß
- Institut für Organische und Makromolekulare Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 10, 07743, Jena, Germany
| |
Collapse
|
2
|
Anchored porphyrin with different side chain groups via its axial coordinate self-assembly for dye-sensitized solar cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Kaufmann M, Müller C, Cullen AA, Brandon MP, Dietzek B, Pryce MT. Photophysics of Ruthenium(II) Complexes with Thiazole π-Extended Dipyridophenazine Ligands. Inorg Chem 2020; 60:760-773. [PMID: 33356204 DOI: 10.1021/acs.inorgchem.0c02765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition-metal-based donor-acceptor systems can produce long-lived excited charge-transfer states by visible-light irradiation. The novel ruthenium(II) polypyridyl type complexes Ru1 and Ru2 based on the dipyridophenazine ligand (L0) directly linked to 4-hydroxythiazoles of different donor strengths were synthesized and photophysically characterized. The excited-state dynamics were investigated by femtosecond-to-nanosecond transient absorption and nanosecond emission spectroscopy complemented by time-dependent density functional theory calculations. These results indicate that photoexcitation in the visible region leads to the population of both metal-to-ligand charge-transfer (1MLCT) and thiazole (tz)-induced intraligand charge-transfer (1ILCT) states. Thus, the excited-state dynamics is described by two excited-state branches, namely, the population of (i) a comparably short-lived phenazine-centered 3MLCT state (τ ≈ 150-400 ps) and (ii) a long-lived 3ILCT state (τ ≈ 40-300 ns) with excess charge density localized on the phenazine and tz moieties. Notably, the ruthenium(II) complexes feature long-lived dual emission with lifetimes in the ranges τEm,1 ≈ 40-300 ns and τEm,2 ≈ 100-200 ns, which are attributed to emission from the 3ILCT and 3MLCT manifolds, respectively.
Collapse
Affiliation(s)
- Martin Kaufmann
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Carolin Müller
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany.,Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
| | - Aoibhin A Cullen
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Michael P Brandon
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany.,Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Center for Energy and Environmental Chemistry Jena, Friedrich Schiller University Jena, Lessingstraße 8, Jena 07743, Germany
| | - Mary T Pryce
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
4
|
Cho NH, Lee JY, Kim OY, Hwang SH. Regioisomer effects of dibenzofuran-based bipolar host materials on yellow phosphorescent OLED device performance. NEW J CHEM 2020. [DOI: 10.1039/c9nj05249f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Four regioisomers were synthesized for use as bipolar host materials for phosphorescent organic light-emitting diodes (PhOLEDs) by classic cross-coupling reactions using cyanofluorene and fused dibenzofuran and were readily purified.
Collapse
Affiliation(s)
- Nam Hee Cho
- Department of Polymer Science & Engineering
- Materials Chemistry & Engineering Laboratory
- Dankook University
- Yongin
- Korea
| | - Jun Yeob Lee
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Oh Young Kim
- Department of Polymer Science & Engineering
- Materials Chemistry & Engineering Laboratory
- Dankook University
- Yongin
- Korea
| | - Seok-Ho Hwang
- Department of Polymer Science & Engineering
- Materials Chemistry & Engineering Laboratory
- Dankook University
- Yongin
- Korea
| |
Collapse
|
5
|
Al-horaibi SA, Asiri AM, El-Shishtawy RM, Gaikwad ST, Rajbhoj AS. Synthesis and characterization of new squaraine dyes with bis-pendent carboxylic groups for dye-sensitized solar cells. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Hupfer ML, Kaufmann M, Preiß J, Weiß D, Beckert R, Dietzek B, Presselt M. Assembly of T-Shaped Amphiphilic Thiazoles on the Air-Water Interface: Impact of Polar Chromophore Moieties, as Well as Dipolarity and π-Extension of the Chromophore on the Supramolecular Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2587-2600. [PMID: 30688466 DOI: 10.1021/acs.langmuir.8b04063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The supramolecular structure essentially determines the properties of organic thin films. In this work, we systematically investigate the influence of the chromophore on the supramolecular structure formation at air-water interfaces by means of the Langmuir-Blodgett technique. Therefore, we focus on the recently introduced class of double-anchor T-shaped amphiphilic dyes, namely, 4-hydroxy-thiazole chromophores that are centrally equipped with an amphiphilicity-inducing hexanoic acid. The thiazoles contain hydrophilic subphase-anchor groups in the 2-position (4- N, N-dimethylaminophenyl (Am), 2-pyridyl (Py), and 4-nitrophenyl (Ni)), whereas the chromophores are systematically extended in the 5-position with various substituents. The combination of the Langmuir technique with online fluorescence measurements revealed that the π-π interactions that are pronounced in the case of 4-methoxybiphenyl derivatives yield the most distinct supramolecular structures. Whereas in the case of Py and Ni derivatives ordered J-type supramolecular structures in microdomains are formed, the Am derivative forms ordered supramolecular structures that are more homogeneous, which are, however, not stabilized by J-type dipolar interactions. Because of the synergetic π-π and dipolar stabilizations, the Ni derivative bearing the 4-methoxybiphenyl unit forms exceptionally stable quasi-two-dimensional Langmuir monolayers reaching very high surface pressures beyond 60 mN/m without any sign of disturbance of the Langmuir monolayer.
Collapse
Affiliation(s)
- Maximilian L Hupfer
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
| | - Martin Kaufmann
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Institute of Organic and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldstraße 10 , 07743 Jena , Germany
| | - Julia Preiß
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
| | - Dieter Weiß
- Institute of Organic and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldstraße 10 , 07743 Jena , Germany
| | - Rainer Beckert
- Institute of Organic and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldstraße 10 , 07743 Jena , Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
| | - Martin Presselt
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany
- Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Str. 9 , 07745 Jena , Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) , Friedrich Schiller University Jena , Philosophenweg 7a , 07743 Jena , Germany
- SciClus GmbH & Co. KG , Moritz-von-Rohr-Str. 1a , 07745 Jena , Germany
| |
Collapse
|
7
|
Schramm S, Weiß D. Fluorescent heterocycles: Recent trends and new developments. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Gampe DM, Schramm S, Ziemann S, Westerhausen M, Görls H, Naumov P, Beckert R. From Highly Fluorescent Donors to Strongly Absorbing Acceptors: The Tunable Properties of Fluorubines. J Org Chem 2017; 82:6153-6162. [DOI: 10.1021/acs.joc.7b00676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dominique Mario Gampe
- Friedrich Schiller University Jena, Institute for Organic Chemistry und Macromolecular Chemistry, Humboldtstr. 10, Jena 07743, Germany
| | - Stefan Schramm
- Friedrich Schiller University Jena, Institute for Organic Chemistry und Macromolecular Chemistry, Humboldtstr. 10, Jena 07743, Germany
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Steffen Ziemann
- Friedrich Schiller University Jena, Institute for Inorganic und Analytical Chemistry, Humboldtstr. 8, Jena 07743, Germany
| | - Matthias Westerhausen
- Friedrich Schiller University Jena, Institute for Inorganic und Analytical Chemistry, Humboldtstr. 8, Jena 07743, Germany
| | - Helmar Görls
- Friedrich Schiller University Jena, Institute for Inorganic und Analytical Chemistry, Humboldtstr. 8, Jena 07743, Germany
| | - Panče Naumov
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Rainer Beckert
- Friedrich Schiller University Jena, Institute for Organic Chemistry und Macromolecular Chemistry, Humboldtstr. 10, Jena 07743, Germany
| |
Collapse
|
9
|
Gampe DM, Schramm S, Nöller F, Weiß D, Görls H, Naumov P, Beckert R. Pushing to the low limits: tetraazaanthracenes with very low-lying LUMO levels and near-infrared absorption. Chem Commun (Camb) 2017; 53:10220-10223. [DOI: 10.1039/c7cc05224c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we explain the extensive changes which result by transforming benzothiadiazoles to highly electron-deficient tetraazaanthracenes.
Collapse
Affiliation(s)
- Dominique Mario Gampe
- Friedrich Schiller University Jena
- Institute of Organic and Macromolecular Chemistry
- 07743 Jena
- Germany
| | - Stefan Schramm
- Friedrich Schiller University Jena
- Institute of Organic and Macromolecular Chemistry
- 07743 Jena
- Germany
- New York University Abu Dhabi
| | - Florian Nöller
- Friedrich Schiller University Jena
- Institute of Organic and Macromolecular Chemistry
- 07743 Jena
- Germany
| | - Dieter Weiß
- Friedrich Schiller University Jena
- Institute of Organic and Macromolecular Chemistry
- 07743 Jena
- Germany
| | - Helmar Görls
- Friedrich Schiller University Jena
- Institute of Inorganic and Analytical Chemistry
- 07743 Jena
- Germany
| | - Panče Naumov
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | - Rainer Beckert
- Friedrich Schiller University Jena
- Institute of Organic and Macromolecular Chemistry
- 07743 Jena
- Germany
| |
Collapse
|