1
|
Rodrigues BM, Diniz CC, da Rocha VN, Köhler MH, Brandão GP, Machado LA, da Silva Júnior EN, Iglesias BA. First report of trans-A 2B-corrole derived from a lapachone derivative: photophysical, TD-DFT and photobiological assays. RSC Adv 2023; 13:11121-11129. [PMID: 37056965 PMCID: PMC10089255 DOI: 10.1039/d3ra00823a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/01/2023] [Indexed: 04/15/2023] Open
Abstract
In this work, the synthesis, characterization and photophysical assays of a new trans-A2B-corrole derivative from the naturally occurring quinone are described. β-Lapachone is a naturally occurring quinoidal compound that provides highly fluorescent heterocyclic compounds such as lapimidazoles. The new trans-A2B-corrole compound was obtained from the reaction between 2,3,4,5,6-(pentafluorophenyl)dipyrromethane and the lapimidazole bearing an aldehyde group. The dyad was characterized by high-resolution mass spectrometry (HRMS), NMR spectroscopy (1H, COSY 2D, HMBC, 19F), FT-IR, UV-vis, steady-state and time-resolved fluorescence, electrochemical studies (CV), TD-DFT analysis and photobiological experiments, in which includes aggregation, stability in solution, photostability and partition coefficients assays. Finally, ROS generation assays were performed using 1,3-diphenylisobenzofuran (DPBF) method and the presented compound showed significant photostability and singlet oxygen production.
Collapse
Affiliation(s)
- Bruna M Rodrigues
- Bioinorganic and Porphyrinoid Material Laboratory, Department of Chemistry, Federal University of Santa Maria Santa Maria-RS Brazil
| | - Carlos C Diniz
- Bioinorganic and Porphyrinoid Material Laboratory, Department of Chemistry, Federal University of Santa Maria Santa Maria-RS Brazil
| | - Vinicius N da Rocha
- Department of Physics, Federal University of Santa Maria Santa Maria-RS Brazil
| | - Mateus H Köhler
- Department of Physics, Federal University of Santa Maria Santa Maria-RS Brazil
| | - Guilherme P Brandão
- Department of Chemistry, Federal University of Minas Gerais Belo Horizonte MG Brazil
| | - Luana A Machado
- Department of Chemistry, Federal University of Minas Gerais Belo Horizonte MG Brazil
- Julius Maximilians-Universität Würzburg (JMU), Institute for Inorganic Chemistry Am Hubland Würzburg 97074 Germany
| | | | - Bernardo A Iglesias
- Bioinorganic and Porphyrinoid Material Laboratory, Department of Chemistry, Federal University of Santa Maria Santa Maria-RS Brazil
| |
Collapse
|
2
|
Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O’Donoghue AJ, da Silva
Júnior EN, Ferreira RS. Structure-Based Identification of Naphthoquinones and Derivatives as Novel Inhibitors of Main Protease M pro and Papain-like Protease PL pro of SARS-CoV-2. J Chem Inf Model 2022; 62:6553-6573. [PMID: 35960688 PMCID: PMC9397563 DOI: 10.1021/acs.jcim.2c00693] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 01/07/2023]
Abstract
The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In this study, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC50) values between 0.41 μM and 9.0 μM. In addition, three compounds inhibited PLpro with IC50 ranging from 1.9 μM to 3.3 μM. To verify the specificity of Mpro and PLpro inhibitors, our experiments included an assessment of common causes of false positives such as aggregation, high compound fluorescence, and inhibition by enzyme oxidation. Altogether, we confirmed novel classes of specific Mpro and PLpro inhibitors. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.
Collapse
Affiliation(s)
- Lucianna H. Santos
- Department of Biochemistry and Immunology,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Thales Kronenberger
- Department of Oncology and Pneumonology, Internal
Medicine VIII, University Hospital Tübingen,
Otfried-Müller-Straße 10, DE72076 Tübingen,
Germany
- School of Pharmacy, Faculty of Health Sciences,
University of Eastern Finland, 70211 Kuopio,
Finland
- Institute of Pharmacy, Pharmaceutical/Medicinal
Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2),
Eberhard Karls University Tübingen, Auf der
Morgenstelle 8, 72076 Tübingen, Germany
| | - Renata G. Almeida
- Institute of Exact Sciences, Department of Chemistry,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Elany B. Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Rafael E. O. Rocha
- Department of Biochemistry and Immunology,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Joyce C. Oliveira
- Institute of Exact Sciences, Department of Chemistry,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Luiza V. Barreto
- Department of Biochemistry and Immunology,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Danielle Skinner
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
- Institute of Organic Chemistry and Biochemistry,
Academy of Sciences of the Czech Republic, 16610 Prague,
Czech Republic
| | - Miriam A. Giardini
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Brendon Woodworth
- Department of Medicine, Division of Infectious
Diseases, University of California San Diego, La Jolla,
California 92093, United States
| | - Conner Bardine
- Department of Pharmaceutical Chemistry,
University of California San Francisco, San Francisco,
California 94143, United States
| | - André L. Lourenço
- Department of Pharmaceutical Chemistry,
University of California San Francisco, San Francisco,
California 94143, United States
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry,
University of California San Francisco, San Francisco,
California 94143, United States
| | - Antti Poso
- Department of Oncology and Pneumonology, Internal
Medicine VIII, University Hospital Tübingen,
Otfried-Müller-Straße 10, DE72076 Tübingen,
Germany
- School of Pharmacy, Faculty of Health Sciences,
University of Eastern Finland, 70211 Kuopio,
Finland
| | - Larissa M. Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Eufrânio N. da Silva
Júnior
- Institute of Exact Sciences, Department of Chemistry,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Rafaela S. Ferreira
- Department of Biochemistry and Immunology,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| |
Collapse
|
3
|
Machado LA, Paz E, Araujo M, Almeida L, Bozzi Í, Dias G, Pereira C, Pedrosa L, Fantuzzi F, Martins F, Cury L, da Silva Júnior EN. Ruthenium(II)‐Catalyzed C–H/N–H Alkyne Annulation of Nonsymmetric Imidazoles: Mechanistic Insights by Computation and Photophysical Properties. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Esther Paz
- UFMG: Universidade Federal de Minas Gerais Chemistry BRAZIL
| | - Maria Araujo
- UFMG: Universidade Federal de Minas Gerais Chemistry BRAZIL
| | | | - Ícaro Bozzi
- UFMG: Universidade Federal de Minas Gerais Chemistry BRAZIL
| | - Gleiston Dias
- UFMG: Universidade Federal de Minas Gerais Chemistry BRAZIL
| | | | | | | | | | - Luiz Cury
- UFMG: Universidade Federal de Minas Gerais Physics BRAZIL
| | | |
Collapse
|
4
|
Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O'Donoghue AJ, da Silva Júnior EN, Ferreira RS. Structure-based identification of naphthoquinones and derivatives as novel inhibitors of main protease Mpro and papain-like protease PLpro of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.05.475095. [PMID: 35018373 PMCID: PMC8750648 DOI: 10.1101/2022.01.05.475095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In the present work, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC 50 ) values between 0.41 µM and 66 µM. In addition, eight compounds inhibited PLpro with IC 50 ranging from 1.7 µM to 46 µM. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.
Collapse
|
5
|
Che Y, Qi X, Qu W, Shi B, Lin Q, Yao H, Zhang Y, Wei T. Synthetic strategies of phenazine derivatives: a review. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu‐Xin Che
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Xiao‐Ni Qi
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Wen‐Juan Qu
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Bing‐Bing Shi
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Qi Lin
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Hong Yao
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - You‐Ming Zhang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Tai‐Bao Wei
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| |
Collapse
|
6
|
Dias GG, Paz ERS, Nunes MP, Carvalho RL, Rodrigues MO, Rodembusch FS, da Silva Júnior EN. Imidazoles and Oxazoles from Lapachones and Phenanthrene-9,10-dione: A Journey through their Synthesis, Biological Studies, and Optical Applications. CHEM REC 2021; 21:2702-2738. [PMID: 34170622 DOI: 10.1002/tcr.202100138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/06/2022]
Abstract
Diverse structural frameworks are found in natural compounds and are well known for their chemical and biological properties; such compounds include the imidazoles and oxazoles. Researchers worldwide are continually working on the development of methods for synthesizing new molecules bearing these basic moiety and evaluating their properties and applications. To expand the knowledge related to azoles, this review summarizes important examples of imidazole and oxazole derivatives from 1,2-dicarbonyl compounds, such as lapachones and phenanthrene-9,10-diones, not only regarding their synthesis and biological applications but also their photophysical properties and uses. The data concerning the latter are particularly scarce in the literature, which leads to underestimation of the potential applications that can be envisaged for these compounds.
Collapse
Affiliation(s)
- Gleiston G Dias
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Esther R S Paz
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Renato L Carvalho
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Marieli O Rodrigues
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, 91501-970, Porto Alegre, RS, Brazil
| | - Fabiano S Rodembusch
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, 91501-970, Porto Alegre, RS, Brazil
| | - Eufrânio N da Silva Júnior
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
7
|
Ma W, Xu B, Sun R, Xu YJ, Ge JF. The application of amide units in the construction of neutral functional dyes for mitochondrial staining. J Mater Chem B 2021; 9:2524-2531. [DOI: 10.1039/d0tb02885a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To develop a new class of neutral fluorescent dyes with mitochondrial staining capacity, a series of functional dyes were obtained from Nile red (2a–e) and coumarin (3a–e) with different amide compounds via Suzuki coupling reactions.
Collapse
Affiliation(s)
- Wei Ma
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou 215123
- China
| | - Bing Xu
- Technology School of Radiation Medicine and Protection
- Medical College of Soochow University
- School for Radiological and Interdisciplinary Sciences (RAD-X)
- Soochow University
- Suzhou 215123
| | - Ru Sun
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou 215123
- China
| | - Yu-Jie Xu
- Technology School of Radiation Medicine and Protection
- Medical College of Soochow University
- School for Radiological and Interdisciplinary Sciences (RAD-X)
- Soochow University
- Suzhou 215123
| | - Jian-Feng Ge
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
8
|
Dias GG, Paz ERS, Kadooca JY, Sabino AA, Cury LA, Torikai K, de Simone CA, Fantuzzi F, da Silva Júnior EN. Rhodium(III)-Catalyzed C-H/N-H Alkyne Annulation of Nonsymmetric 2-Aryl (Benz)imidazole Derivatives: Photophysical and Mechanistic Insights. J Org Chem 2021; 86:264-278. [PMID: 33306394 DOI: 10.1021/acs.joc.0c02054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rhodium(III) catalysis enabled C-H/N-H alkyne annulation of nonsymmetric imidazole derivatives. This study encompasses the synthesis of imidazoles from a naturally occurring quinoidal compound and their use for the preparation of rigid π-extended imidazole derivatives with outstanding fluorescence. Our study also brings to light the photophysical aspects and the mechanism of the reaction studied via computational calculations. This method provided an efficient and versatile tool for the synthesis of fluorescent compounds with a wide range of chemical and biological applications.
Collapse
Affiliation(s)
- Gleiston G Dias
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Esther R S Paz
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Juliana Y Kadooca
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Adão A Sabino
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luiz A Cury
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Kohei Torikai
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Carlos A de Simone
- Institute of Physics, University of São Paulo, São Carlos, São Paulo 13560-160, Brazil
| | - Felipe Fantuzzi
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland, 97074 Würzburg, Germany
| | - Eufrânio N da Silva Júnior
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
9
|
Foulkes MJ, Tolliday FH, Henry KM, Renshaw SA, Jones S. Evaluation of the anti-inflammatory effects of synthesised tanshinone I and isotanshinone I analogues in zebrafish. PLoS One 2020; 15:e0240231. [PMID: 33022012 PMCID: PMC7537861 DOI: 10.1371/journal.pone.0240231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/22/2020] [Indexed: 01/13/2023] Open
Abstract
During inflammation, dysregulated neutrophil behaviour can play a major role in a range of chronic inflammatory diseases, for many of which current treatments are generally ineffective. Recently, specific naturally occurring tanshinones have shown promising anti-inflammatory effects by targeting neutrophils in vivo, yet such tanshinones, and moreover, their isomeric isotanshinone counterparts, are still a largely underexplored class of compounds, both in terms of synthesis and biological effects. To explore the anti-inflammatory effects of isotanshinones, and the tanshinones more generally, a series of substituted tanshinone and isotanshinone analogues was synthesised, alongside other structurally similar molecules. Evaluation of these using a transgenic zebrafish model of neutrophilic inflammation revealed differential anti-inflammatory profiles in vivo, with a number of compounds exhibiting promising effects. Several compounds reduce initial neutrophil recruitment and/or promote resolution of neutrophilic inflammation, of which two also result in increased apoptosis of human neutrophils. In particular, the methoxy-substituted tanshinone 39 specifically accelerates resolution of inflammation without affecting the recruitment of neutrophils to inflammatory sites, making this a particularly attractive candidate for potential pro-resolution therapeutics, as well as a possible lead for future development of functionalised tanshinones as molecular tools and/or chemical probes. The structurally related β-lapachones promote neutrophil recruitment but do not affect resolution. We also observed notable differences in toxicity profiles between compound classes. Overall, we provide new insights into the in vivo anti-inflammatory activities of several novel tanshinones, isotanshinones, and structurally related compounds.
Collapse
Affiliation(s)
- Matthew J. Foulkes
- Department of Chemistry, The University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Faith H. Tolliday
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Katherine M. Henry
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Simon Jones
- Department of Chemistry, The University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Choudhari D, Salunke-Gawali S, Chakravarty D, Shaikh SR, Lande DN, Gejji SP, Rao PK, Satpute S, Puranik VG, Gonnade R. Synthesis and biological activity of imidazole based 1,4-naphthoquinones. NEW J CHEM 2020. [DOI: 10.1039/c9nj04339j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design and development of drugs in multi-drug resistant (MDR) infections have been of growing interest. The syntheses, structural studies, antibacterial and antifungal activities of imidazole-based 1,4-naphthoquinones are studied in this investigation.
Collapse
Affiliation(s)
- Dinkar Choudhari
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | | | | | - Samir R. Shaikh
- Centre for Material Characterization
- National Chemical Laboratory
- Pune 411008
- India
| | - Dipali N. Lande
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Shridhar P. Gejji
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Pradeep Kumar Rao
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Surekha Satpute
- Department of Microbiology
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Vedavati G. Puranik
- Centre for Material Characterization
- National Chemical Laboratory
- Pune 411008
- India
| | - Rajesh Gonnade
- Centre for Material Characterization
- National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
11
|
Carvalho PHPR, Correa JR, Paiva KLR, Machado DFS, Scholten JD, Neto BAD. Plasma membrane imaging with a fluorescent benzothiadiazole derivative. Beilstein J Org Chem 2019; 15:2644-2654. [PMID: 31807199 PMCID: PMC6880836 DOI: 10.3762/bjoc.15.257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
This work describes a novel fluorescent 2,1,3-benzothiadiazole derivative designed to act as a water-soluble and selective bioprobe for plasma membrane imaging. The new compound was efficiently synthesized in a two-step procedure with good yields. The photophysical properties were evaluated and the dye proved to have an excellent photostability in several solvents. DFT calculations were found in agreement with the experimental data and helped to understand the stabilizing intramolecular charge-transfer process from the first excited state. The new fluorescent derivative could be applied as selective bioprobe in several cell lines and displayed plasma-membrane affinity during the imaging experiments for all tested models.
Collapse
Affiliation(s)
- Pedro H P R Carvalho
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil
- Laboratory of Molecular Catalysis, Institute of Chemistry, Graduate Program (PPGQ), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Jose R Correa
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil
| | - Karen L R Paiva
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil
| | - Daniel F S Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil
| | - Jackson D Scholten
- Laboratory of Molecular Catalysis, Institute of Chemistry, Graduate Program (PPGQ), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil
- Laboratory of Molecular Catalysis, Institute of Chemistry, Graduate Program (PPGQ), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| |
Collapse
|
12
|
Carvalho PHPR, Correa JR, Paiva KLR, Baril M, Machado DFS, Scholten JD, de Souza PEN, Veiga-Souza FH, Spencer J, Neto BAD. When the strategies for cellular selectivity fail. Challenges and surprises in the design and application of fluorescent benzothiadiazole derivatives for mitochondrial staining. Org Chem Front 2019. [DOI: 10.1039/c9qo00428a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Design, synthesis, molecular architecture and the unexpected behavior of fluorescent benzothiadiazole for selective mitochondrial and plasma membrane staining are investigated.
Collapse
|
13
|
Almeida RG, de Carvalho RL, Nunes MP, Gomes RS, Pedrosa LF, de Simone CA, Gopi E, Geertsen V, Gravel E, Doris E, da Silva Júnior EN. Carbon nanotube–ruthenium hybrid towards mild oxidation of sulfides to sulfones: efficient synthesis of diverse sulfonyl compounds. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00384c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru nanoparticles on carbon nanotubes were used in the mild oxidation of sulfides to sulfones.
Collapse
Affiliation(s)
- Renata G. Almeida
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Renato L. de Carvalho
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Mateus P. Nunes
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Roberto S. Gomes
- Department of Chemistry and Chemical Biology
- Harvard University
- USA
| | | | | | - Elumalai Gopi
- Service de Chimie Bioorganique et de Marquage (SCBM) CEA
- Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | | | - Edmond Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM) CEA
- Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Eric Doris
- Service de Chimie Bioorganique et de Marquage (SCBM) CEA
- Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | | |
Collapse
|
14
|
de Moliner F, King A, Dias GG, de Lima GF, de Simone CA, da Silva Júnior EN, Vendrell M. Quinone-Derived π-Extended Phenazines as New Fluorogenic Probes for Live-Cell Imaging of Lipid Droplets. Front Chem 2018; 6:339. [PMID: 30151362 PMCID: PMC6099520 DOI: 10.3389/fchem.2018.00339] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/19/2018] [Indexed: 01/14/2023] Open
Abstract
We describe a new synthetic methodology for the preparation of fluorescent π-extended phenazines from the naturally-occurring naphthoquinone lapachol. These novel structures represent the first fluorogenic probes based on the phenazine scaffold for imaging of lipid droplets in live cells. Systematic characterization and analysis of the compounds in vitro and in cells led to the identification of key structural features responsible for the fluorescent behavior of quinone-derived π-extended phenazines. Furthermore, live-cell imaging experiments identified one compound (P1) as a marker for intracellular lipid droplets with minimal background and enhanced performance over the lipophilic tracker Nile Red.
Collapse
Affiliation(s)
- Fabio de Moliner
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron King
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gleiston G. Dias
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme F. de Lima
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Eufrânio N. da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marc Vendrell
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Dias GG, King A, de Moliner F, Vendrell M, da Silva Júnior EN. Quinone-based fluorophores for imaging biological processes. Chem Soc Rev 2018; 47:12-27. [PMID: 29099127 DOI: 10.1039/c7cs00553a] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Quinones are privileged chemical structures playing crucial roles as redox and alkylating agents in a wide range of processes in cells. The broad functional array of quinones has prompted the development of new chemical approaches, including C-H bond activation and asymmetric reactions, to generate probes for examining their activity by means of fluorescence imaging. This tutorial review covers recent advances in the design, synthesis and applications of quinone-based fluorescent agents for visualizing specific processes in multiple biological systems, from cells to tissues and complex organisms in vivo.
Collapse
Affiliation(s)
- Gleiston G Dias
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | | | | | | | | |
Collapse
|