1
|
Dabiri M, Lehi NF, Mohammadian R. Catalytic stereoselective Mannich-type reactions for construction of fluorinated compounds. Mol Divers 2021; 26:1267-1310. [PMID: 34228344 DOI: 10.1007/s11030-021-10235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/13/2021] [Indexed: 10/20/2022]
Abstract
For its unique role in developing and designing new bioactive materials and healthcare products, fluoro-organic compounds have attracted remarkable interest. Along with ever-increasing demand for a wider availability of fluorine-containing structural units, a large diversity of methods has been introduced to incorporate fluorine atoms specially in a stereoselective fashion. Among them, catalytic Mannich reaction can proceed with a broad variety of reactants and open clear paths for the synthesis of versatile amine synthons in the synthesis of natural product and pharmaceutical molecules. This review provides an overview of the employment of catalytic asymmetric Mannich reactions in the synthesis of fluorine-containing amine compounds and highlights the conceivable distinct mechanisms.
Collapse
Affiliation(s)
- Minoo Dabiri
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Islamic Republic of Iran.
| | - Noushin Farajinia Lehi
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Islamic Republic of Iran
| | - Reza Mohammadian
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Islamic Republic of Iran
| |
Collapse
|
2
|
Shevchuk M, Wang Q, Pajkert R, Xu J, Mei H, Röschenthaler G, Han J. Recent Advances in Synthesis of Difluoromethylene Phosphonates for Biological Applications. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001464] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Shevchuk
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Qian Wang
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jingcheng Xu
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Haibo Mei
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Gerd‐Volker Röschenthaler
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jianlin Han
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
3
|
Pajkert R, Koroniak H, Kafarski P, Röschenthaler GV. Hypervalent-iodine mediated one-pot synthesis of isoxazolines and isoxazoles bearing a difluoromethyl phosphonate moiety. Org Biomol Chem 2021; 19:4871-4876. [PMID: 34002761 DOI: 10.1039/d1ob00685a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A one-pot, regioselective 1,3-dipolar cycloaddition of in situ generated (diethoxyphosphoryl)difluoromethyl nitrile oxide toward selected alkenes and alkynes is reported. This protocol enables facile access to 3,5-disubstituted isoxazolines and isoxazoles bearing a CF2P(O)(OEt)2 moiety in good to excellent yields, under mild reaction conditions.
Collapse
Affiliation(s)
- Romana Pajkert
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, P.O. Box 750 561, D-28759 Bremen, Germany.
| | - Henryk Koroniak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Paweł Kafarski
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Gerd-Volker Röschenthaler
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, P.O. Box 750 561, D-28759 Bremen, Germany.
| |
Collapse
|
4
|
Tokairin Y, Konno H, Noireau A, West C, Moriwaki H, Soloshonok VA, Nicolas C, Gillaizeau I. Asymmetric synthesis of the two enantiomers of β-phosphorus-containing α-amino acids via hydrophosphinylation and hydrophosphonylation of chiral Ni(ii)-complexes. Org Chem Front 2021. [DOI: 10.1039/d1qo00159k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new approach for the synthesis of the two enantiomers of β-phosphorus-containing α-amino acids was developed via Michael addition of secondary phosphine oxides and dialkyl phosphites to chiral Ni(ii)-complexes of a dehydroalanine-Schiff base.
Collapse
Affiliation(s)
- Yoshinori Tokairin
- Institute of Organic and Analytical Chemistry
- ICOA UMR 7311 CNRS
- Université d'Orléans
- 45100 Orléans
- France
| | - Hiroyuki Konno
- Department of Biochemical Engineering
- Graduate School of Science and Technology
- Yamagata University
- Yonezawa
- Japan
| | - Angéline Noireau
- Institute of Organic and Analytical Chemistry
- ICOA UMR 7311 CNRS
- Université d'Orléans
- 45100 Orléans
- France
| | - Caroline West
- Institute of Organic and Analytical Chemistry
- ICOA UMR 7311 CNRS
- Université d'Orléans
- 45100 Orléans
- France
| | | | - Vadim A. Soloshonok
- Department of Organic Chemistry I
- Faculty of Chemistry
- University of Basque County UPV/EHU
- 20018 San Sebastian
- Spain
| | - Cyril Nicolas
- Institute of Organic and Analytical Chemistry
- ICOA UMR 7311 CNRS
- Université d'Orléans
- 45100 Orléans
- France
| | - Isabelle Gillaizeau
- Institute of Organic and Analytical Chemistry
- ICOA UMR 7311 CNRS
- Université d'Orléans
- 45100 Orléans
- France
| |
Collapse
|
5
|
Cao H, Li J, Zhang F, Cahard D, Ma J. Asymmetric Synthesis of Chiral Amino Carboxylic‐Phosphonic Acid Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hao‐Qiang Cao
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
| | - Jun‐Kuan Li
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
| | - Fa‐Guang Zhang
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| | - Dominique Cahard
- CNRS UMR 6014 COBRA Normandie Université 76821 Mont Saint Aignan France
| | - Jun‐An Ma
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| |
Collapse
|
6
|
Brittain WDG, Lloyd CM, Cobb SL. Synthesis of complex unnatural fluorine-containing amino acids. J Fluor Chem 2020; 239:109630. [PMID: 33144742 PMCID: PMC7583769 DOI: 10.1016/j.jfluchem.2020.109630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
The area of fluorinated amino acid synthesis has seen rapid growth over the past decade. As reports of singly fluorinated natural amino acid derivatives have grown, researchers have turned their attention to develop methodology to access complex proteinogenic examples. A variety of reaction conditions have been employed in this area, exploiting new advances in the wider synthetic community such as photocatalysis and palladium cross-coupling. In addition, novel fluorinated functional groups have also been incorporated into amino acids, with SFX and perfluoro moieties now appearing with more frequency in the literature. This review focuses on synthetic methodology for accessing complex non-proteinogenic amino acids, along with amino acids containing multiple fluorine atoms such as CF3, SF5 and perfluoroaromatic groups.
Collapse
Affiliation(s)
| | - Carissa M Lloyd
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
7
|
Eder I, Haider V, Zebrowski P, Waser M. Recent Progress in the Asymmetric Syntheses of α‐Heterofunctionalized (Masked) α‐ and β‐Amino Acid Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Isabella Eder
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| | - Victoria Haider
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| | - Paul Zebrowski
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| | - Mario Waser
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| |
Collapse
|
8
|
Zhang C, Yang J, Zhou W, Tan Q, Yang Z, He L, Zhang M. Enantioselective Mannich Reaction of Glycine Iminoesters with N-Phosphinoyl Imines: A Bifunctional Approach. Org Lett 2019; 21:8620-8624. [DOI: 10.1021/acs.orglett.9b03223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Changhui Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jiao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Wenqiang Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qiuyuan Tan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
9
|
Mei H, Han J, Fustero S, Román R, Ruzziconi R, Soloshonok VA. Recent progress in the application of fluorinated chiral sulfinimine reagents. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|