1
|
Yadagiri B, Narayanaswamy K, Sharma GD, Singh SP. Efficient Medium Bandgap Electron Acceptor Based on Diketopyrrolopyrrole and Furan for Efficient Ternary Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18751-18763. [PMID: 35412303 DOI: 10.1021/acsami.2c02272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the design of novel medium bandgap nonfullerene small molecule acceptor NFSMA SPS-TDPP-2CNRh with A2-π-A1-π-A2 architecture, with the molecular engineering of this material comprising a strong electron-accepting backbone unit DPP (A1) as the acceptor, which is attached to the dicyanomethylene-3-hexylrhodanine (A2) acceptor via a furan (π-spacer) linker. We systematically studied its structural and optoelectronic properties. The incorporation of dicyanomethylene-3-hexylrhodanine and furan enhance the light absorption and electrochemical properties by extending π-conjugation and is anticipated to improve VOC by decreasing the LUMO level. The long alkyl chain units were responsible for the better solubility and aggregation of the resultant molecule. Binary BHJ-OSCs constructed with polymer P as the donor and SPS-TDPP-2CNRh as the acceptor resulted in a PCE of 11.49% with improved VOC = 0.98 V, JSC = 18.32 mA/cm2, and FF = 0.64 for P:SPS-TDPP-2CNRh organic solar cells. A ternary solar cell device was also made using Y18-DMO and SPS-TDPP-2CNRh as acceptors having complementary absorption profiles and polymer P as the donor, resulting in a PCE of 15.50% with improved JSC = 23.08 mA/cm2, FF = 0.73, and VOC = 0.92 V for the P:SPS-TDPP-2CNRh:Y18-DMO solar cell. The ternary OSCs with SPS-TDPP-2CNRh as the host acceptor in the P:Y18-DMO binary film were shown to have improved PCE values, which is mainly attributed to the effective photoinduced charge transfer through multiple networks and the use of excitons from SPS-TDPP-2CNRh and Y18-DMO. Moreover, in the ternary BHJ active layers, the superior stable charge transport that was observed compared to the binary counterparts may also lead to an increase in the fill factor. These results demonstrate that combining medium bandgap and narrow bandgap NFSMAs with a wide bandgap polymer donor is a successful route to increasing the overall PCE of the OSCs via the ternary BHJ concept.
Collapse
Affiliation(s)
- Bommaramoni Yadagiri
- Polymers and Functional Materials Division, CSIR Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Kamatham Narayanaswamy
- Polymers and Functional Materials Division, CSIR Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology (Deemed University), Jamdoli, Jaipur, Rajasthan 302031, India
- Department of Electronics and Communication Engineering, The LNM Institute of Information Technology (Deemed University), Jamdoli, Jaipur, Rajasthan 302031, India
| | - Surya Prakash Singh
- Polymers and Functional Materials Division, CSIR Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
2
|
Srivishnu K, Naresh M, Laxmikanth Rao J, Giribabu L. Photo-induced intramolecular electron transfer in phenoxazine-phthalocyanine donor-acceptor systems. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Donor-Acceptor (D-A) systems based on phenoxazine – phthalocyanine (PXZ-Pc) and phenoxazine – zinc phthalocyanine (PXZ-ZnPc) have been designed and synthesized. Both D-A systems are characterized using various spectroscopic and electrochemical techniques including in-situ methods. Optical absorption studies suggest that both Soret and Q bands of these D-A systems are hypsochromically and bathochromically shifted, when compared to its individual constituents. The study supported by theoretical calculations shows clearly that there exists a negligible electronic communication in the ground state between donor phenoxazine and acceptor phthalocyanine. However, attractively, both D-A systems exhibit noteworthy fluorescence emission quenching (90–99%) of the phthalocyanine emission compared to its reference compounds. The fluorescence emission quenching featured at the excited-state intramolecular photoinduced electron transfer from ground state of phenoxazine to the excited state of phthalocyaine/zinc phthalocyanine. The rates of electron-transfer ([Formula: see text] of these D-A systems are found in the range of 5.7 × 108 to 2.8 × 109 s[Formula: see text] and are according to solvent polarity.
Collapse
Affiliation(s)
- K.S. Srivishnu
- Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi 201002, India
| | - Madarapu Naresh
- Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - J. Laxmikanth Rao
- Catalysis & Fine Chemical Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Lingamallu Giribabu
- Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi 201002, India
| |
Collapse
|
3
|
Yang Z, Fan X, Li H, Li X, Li S, Zhang Z, Lin H, Qian J, Hua J. A Small-Molecule Diketopyrrolopyrrole-Based Dye for in vivo NIR-IIa Fluorescence Bioimaging. Chemistry 2021; 27:14240-14249. [PMID: 34337810 DOI: 10.1002/chem.202102312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 02/01/2023]
Abstract
Organic small-molecule fluorophores with near-infrared IIa (NIR-IIa) emission have great potential in pre-clinical detection and inoperative imaging due to the high-spatial resolution and deep penetration. However, developments of the NIR-IIa fluorophores are still facing considerable challenges. In this work, a series of diketopyrrolopyrrole (DPP)-based fluorophores were designed and synthesized. Subsequently, nanomaterial T25@F127 with significant NIR-IIa emission properties was rationally prepared by encapsulating DPP-based fluorophore T25, and was selected for fluorescence angiography and cerebral vascular microscopic imaging with nearly 800 μm penetrating depth and excellent signal-background ratio of 4.07 and 2.26 (at 250 and 400 μm), respectively. Furthermore, the nanomaterial T25@cRGD with tumor targeting ability can image tiny metastatic tumor on intestine with a small size of 0.3 mm×1.0 mm and high-spatial resolution (SBR=3.84). This study demonstrates that the nanomaterials which encapsulated T25 behave as excellent NIR-IIa fluorescence imaging agents and have a great potential for in vivo biological application.
Collapse
Affiliation(s)
- Zhicheng Yang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310000, P. R. China.,State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - He Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xinsheng Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Sifan Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310000, P. R. China
| | - Jun Qian
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310000, P. R. China.,State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Jianli Hua
- Key Laboratory for Advanced Materials, Joint International Research Laboratory for Precision Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|