1
|
Zhao H. Recent advances in enzymatic carbon-carbon bond formation. RSC Adv 2024; 14:25932-25974. [PMID: 39161440 PMCID: PMC11331486 DOI: 10.1039/d4ra03885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Enzymatic carbon-carbon (C-C) bond formation reactions have become an effective and invaluable tool for designing new biological and medicinal molecules, often with asymmetric features. This review provides a systematic overview of key C-C bond formation reactions and enzymes, with the focus of reaction mechanisms and recent advances. These reactions include the aldol reaction, Henry reaction, Knoevenagel condensation, Michael addition, Friedel-Crafts alkylation and acylation, Mannich reaction, Morita-Baylis-Hillman (MBH) reaction, Diels-Alder reaction, acyloin condensations via Thiamine Diphosphate (ThDP)-dependent enzymes, oxidative and reductive C-C bond formation, C-C bond formation through C1 resource utilization, radical enzymes for C-C bond formation, and other C-C bond formation reactions.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Bioproducts and Biosystems Engineering, University of Minnesota St. Paul MN 55108 USA
| |
Collapse
|
2
|
Kolagkis PX, Galathri EM, Kokotos CG. Green and sustainable approaches for the Friedel-Crafts reaction between aldehydes and indoles. Beilstein J Org Chem 2024; 20:379-426. [PMID: 38410780 PMCID: PMC10896228 DOI: 10.3762/bjoc.20.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
The synthesis of indoles and their derivatives, more specifically bis(indolyl)methanes (BIMs), has been an area of great interest in organic chemistry, since these compounds exhibit a range of interesting biological and pharmacological properties. BIMs are naturally found in cruciferous vegetables and have been shown to be effective antifungal, antibacterial, anti-inflammatory, and even anticancer agents. Traditionally, the synthesis of BIMs has been achieved upon the acidic condensation of an aldehyde with indole, utilizing a variety of protic or Lewis acids. However, due to the increased environmental awareness of our society, the focus has shifted towards the development of greener synthetic technologies, like photocatalysis, organocatalysis, the use of nanocatalysts, microwave irradiation, ball milling, continuous flow, and many more. Thus, in this review, we summarize the medicinal properties of BIMs and the developed BIM synthetic protocols, utilizing the reaction between aldehydes with indoles, while focusing on the more environmentally friendly methods developed over the years.
Collapse
Affiliation(s)
- Periklis X Kolagkis
- Laboratory of Organic Chemistry, Department of Organic Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Eirini M Galathri
- Laboratory of Organic Chemistry, Department of Organic Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Organic Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece
| |
Collapse
|
3
|
Kublicki M, Koszelewski D, Brodzka A, Ostaszewski R. Wheat germ lipase: isolation, purification and applications. Crit Rev Biotechnol 2021; 42:184-200. [PMID: 34266327 DOI: 10.1080/07388551.2021.1939259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, wheat germ lipase (WGL) is attracting considerable interest. To date, several WGL applications have already been described: (i) fats and oils modification; (ii) esterification reactions in organic media, accepting a wide range of acids and alcohols as substrates; (iii) the asymmetric resolution of various chiral racemic intermediates; (iv) more recently, the promiscuous activity of WGL has been shown in carbon-carbon bond formation. To date, no crystallographic structure of this enzyme has been published, which means its activity, catalytic potential and substrate scope is being assessed empirically. Therefore, new catalytic activities of this enzyme are constantly being discovered. Taking into account the emergency and the current interest in environmentally sustainable processes, this review aims to highlight the origin, isolation, stabilization by immobilization and applications of the wheat germ lipase.HIGHLIGHTSWheat germ as an inexpensive source of biocatalystsWheat germ lipase an efficient catalyst for various chemical transformationsWheat germ lipase in food productionIndustrial applications of wheat germ lipaseWheat germ lipase as a promiscuous biocatalystImmobilization of wheat germ lipase as a method of stabilization.
Collapse
Affiliation(s)
- Marcin Kublicki
- Institute of Organic Chemistry, Polish Academy of Sciences, Warszawa, Poland
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Warszawa, Poland
| | - Anna Brodzka
- Institute of Organic Chemistry, Polish Academy of Sciences, Warszawa, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Warszawa, Poland
| |
Collapse
|
4
|
One-pot cascade synthesis of benzopyrans and dihydropyrano[c]chromenes catalyzed by lipase TLIM. Bioorg Chem 2020; 99:103888. [DOI: 10.1016/j.bioorg.2020.103888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/10/2023]
|
5
|
Fu Y, Lu Z, Fang K, He X, Xu H, Hu Y. Enzymatic approach to cascade synthesis of bis(indolyl)methanes in pure water. RSC Adv 2020; 10:10848-10853. [PMID: 35492907 PMCID: PMC9050360 DOI: 10.1039/c9ra10014h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/10/2020] [Indexed: 11/21/2022] Open
Abstract
TLIM: lipase from Thermomyces lanuginosus immobilized on particle silica gel.
Collapse
Affiliation(s)
- Yajie Fu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 210009
- China
| | - Zeping Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 210009
- China
| | - Ke Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 210009
- China
| | - Xinyi He
- State Key Laboratory of Materials-Oriented Chemical Engineering
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 210009
- China
| | - Huajin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 210009
- China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 210009
- China
| |
Collapse
|
6
|
Wilk M, Trzepizur D, Koszelewski D, Brodzka A, Ostaszewski R. Synthesis of (E)-α,β-unsaturated carboxylic esters derivatives from cyanoacetic acid via promiscuous enzyme-promoted cascade esterification/Knoevenagel reaction. Bioorg Chem 2019; 93:102816. [DOI: 10.1016/j.bioorg.2019.02.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
|
7
|
Koszelewski D, Ostaszewski R. The studies on chemoselective promiscuous activity of hydrolases on acylals transformations. Bioorg Chem 2019; 93:102825. [DOI: 10.1016/j.bioorg.2019.02.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 12/27/2022]
|
8
|
Koszelewski D, Ostaszewski R. Enzyme Promiscuity as a Remedy for the Common Problems with Knoevenagel Condensation. Chemistry 2019; 25:10156-10164. [DOI: 10.1002/chem.201901491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/24/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Dominik Koszelewski
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Ryszard Ostaszewski
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
9
|
Shukla RD, Rai B, Kumar A. Exploration of Catalytic Activity of Trypsin for C(sp3
)-H Functionalization and Consequent C-C Bond Formation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ratnakar Dutt Shukla
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute (CDRI); 226031 Lucknow India
- Academy of Scientific & Innovative Research (AcSIR); New Delhi India
| | - Byanju Rai
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute (CDRI); 226031 Lucknow India
| | - Atul Kumar
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute (CDRI); 226031 Lucknow India
- Academy of Scientific & Innovative Research (AcSIR); New Delhi India
| |
Collapse
|
10
|
Koszelewski D, Ostaszewski R. Biocatalytic Promiscuity of Lipases in Carbon‐Phosphorus Bond Formation. ChemCatChem 2019. [DOI: 10.1002/cctc.201900397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dominik Koszelewski
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Ryszard Ostaszewski
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
11
|
Wilk M, Brodzka A, Koszelewski D, Madej A, Paprocki D, Żądło-Dobrowolska A, Ostaszewski R. The influence of the isocyanoesters structure on the course of enzymatic Ugi reactions. Bioorg Chem 2019; 93:102817. [PMID: 30824123 DOI: 10.1016/j.bioorg.2019.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/29/2023]
Abstract
The impact of isocyanoesters structure on enzymatic three-component Ugi reactions course has been determined. The significant promiscuous ability of enzyme in Ugi-type reaction switching between four (U-4CR) and three (U-3CR) components reactions depending on the size of used isocyanoester. The application of short-chain cyanoesters up to isocyanpropionate leading to product of three component reaction exclusively while longer isocyanobutyrate gives only the product of four component reaction. The limitation of studied enzymatic Ugi reaction is a substrate selectivity of lipases.
Collapse
Affiliation(s)
- Monika Wilk
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Brodzka
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dominik Koszelewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Arleta Madej
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Daniel Paprocki
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Żądło-Dobrowolska
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
12
|
Application of Enzymatic Promiscuity in Pharmaceutical Synthesis: Papain-catalyzed One-pot Synthesis of 1,4-Dihydropyridine Calcium Channel Antagonists and Derivatives. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8273-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Koszelewski D, Borys F, Brodzka A, Ostaszewski R. Synthesis of Enantiomerically Pure 5,6-Dihydropyran-2-ones via Chemoenzymatic Sequential DKR-RCM Reaction. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dominik Koszelewski
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Filip Borys
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Anna Brodzka
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
14
|
Pandolfi F, Feroci M, Chiarotto I. Role of Anion and Cation in the 1-Methyl-3-butyl Imidazolium Ionic Liquids BMImX: The Knoevenagel Condensation. ChemistrySelect 2018. [DOI: 10.1002/slct.201800295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fabiana Pandolfi
- Department Dipartimento di Scienze di Base e Applicate per l'Ingegneria; Sapienza Università di Roma; Via del Castro Laurenziano 7- 00161 Roma Italy
| | - Marta Feroci
- Department Dipartimento di Scienze di Base e Applicate per l'Ingegneria; Sapienza Università di Roma; Via del Castro Laurenziano 7- 00161 Roma Italy
| | - Isabella Chiarotto
- Department Dipartimento di Scienze di Base e Applicate per l'Ingegneria; Sapienza Università di Roma; Via del Castro Laurenziano 7- 00161 Roma Italy
| |
Collapse
|
15
|
Dwivedee BP, Soni S, Sharma M, Bhaumik J, Laha JK, Banerjee UC. Promiscuity of Lipase-Catalyzed Reactions for Organic Synthesis: A Recent Update. ChemistrySelect 2018. [DOI: 10.1002/slct.201702954] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bharat P. Dwivedee
- Department of Pharmaceutical Technology (Biotechnology); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| | - Surbhi Soni
- Department of Biotechnology; National Institute of Pharmaceutical Education and Research, S.A.S. Nagar; 160062 Punjab India
| | - Misha Sharma
- Department of Pharmaceutical Technology (Process Chemistry); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| | - Jayeeta Bhaumik
- Department of Pharmaceutical Technology (Biotechnology); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| | - Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| | - Uttam C. Banerjee
- Department of Pharmaceutical Technology (Biotechnology); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| |
Collapse
|
16
|
Yu J, Chen X, Jiang M, Wang A, Yang L, Pei X, Zhang P, Wu SG. Efficient promiscuous Knoevenagel condensation catalyzed by papain confined in Cu3(PO4)2 nanoflowers. RSC Adv 2018; 8:2357-2364. [PMID: 35541490 PMCID: PMC9077389 DOI: 10.1039/c7ra12940h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/29/2017] [Indexed: 11/21/2022] Open
Abstract
To develop an efficient and green immobilized biocatalyst for promiscuous catalysis which has a broad scope of applications, hybrid nanoflower (hNF) confined papain as a biocatalyst has been proposed and characterized in this study. hNFs were firstly prepared through mixing CuSO4 aqueous solution with papain in phosphate saline (PBS) at room temperature. The resulting hNFs were characterized by SEM and verified through a hydrolysis reaction with N-benzoyl-dl-arginine amide as substrate. Under optimal conditions, this nano-biocatalyst demonstrated a 15-fold hydrolytic activity compared with papain of free form, along with better thermal stability. A series of reaction factors (reaction temperature, time, and solvent) have been investigated for Knoevenagel condensation reactions with hNFs as catalyst. At optimal conditions, product yield of the hNFs catalyzed reaction was 1.3 fold higher than that of the free enzyme with benzaldehyde and acetylacetone as substrates. A few aldehydes and methylene compounds have also been used to test the generality and scope of this new enzymatic promiscuity. To sum up, the obtained hNFs demonstrate better catalytic properties than free papain and the inorganic metal-salt crystal can function as both support and promotor in biocatalysis. Knoevenagel condensation was catalyzed and enhanced by Cu2+ and papain on hybrid nanoflowers (hNFs) in the promiscuous catalysis.![]()
Collapse
Affiliation(s)
- Jianyun Yu
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Xinxin Chen
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Anming Wang
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Linlin Yang
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Xiaolin Pei
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Pengfei Zhang
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Stephen Gang Wu
- Department of Energy, Environmental and Chemical Engineering
- Washington University
- St. Louis
- USA
| |
Collapse
|