1
|
Li P, Tu JL, Hu AM, Guo L, Yang C, Xia W. Photoinduced decatungstate-catalyzed C(sp 3)-H thioetherification by sulfinate salts. Org Biomol Chem 2024; 22:3420-3424. [PMID: 38619101 DOI: 10.1039/d4ob00394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Thiols and thioesters play crucial roles in pharmaceuticals, biology, and material science as essential organosulfur compounds. Leveraging readily available and cost-effective inert alkanes through direct thioetherification holds promise for yielding high-value-added products. Herein, we present a photoinduced strategy for sulfur-containing modification of inert alkanes utilizing decatungstate as hydrogen atom transfer reagent, offering a straightforward and practical approach for synthesizing thioethers and thioesters.
Collapse
Affiliation(s)
- Pengcheng Li
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Jia-Lin Tu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Ao-Men Hu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Li J, Ma J, Wei C, Zheng Z, Han Y, Wang H, Wang X, Hu C. Polyoxometalate-based ionic liquids: efficient reversible phase transformation-type catalysts for thiolation of alcohols to construct C-S bonds. Dalton Trans 2024; 53:4492-4500. [PMID: 38348738 DOI: 10.1039/d4dt00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
As important building blocks in natural products and organic synthesis, thioethers have a wide range of potential applications. Herein, polyoxometalate-based ionic liquids (POM-ILs-SO3H) derived from N-alkyl imidazole were synthesized and used for the first time for the thiolation of alcohols to construct C-S bonds in a series of benzyl thioethers. This type of POM-ILs-SO3H catalyst exhibited high catalytic activity, providing up to 98% yield of thioether within 1 h at 70 °C. The alkyl chain length of the imidazole had a certain effect on the solubility of the POM-ILs-SO3H catalysts in the reaction solvent, and then affected their catalytic activity. The catalytic system had a wide substrate scope and was suitable for the reaction of tertiary and secondary benzyl alcohols with thiophenols or cycloalkyl thiols. In particular, [PIMPS]3PW12O40 (PIM = 1-propylimidazole, PS = propane sulfonate) as a reversible phase transformation-type catalyst, combining the advantages of homogeneous and heterogeneous catalysts, exhibited high activity and good recyclability with only a slight decrease in the yield after five runs. Additionally, a carbocation mechanism was proposed for the thiolation reaction of alcohols.
Collapse
Affiliation(s)
- Jikun Li
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Junwei Ma
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanping Wei
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Zebao Zheng
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Yinfeng Han
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Huiping Wang
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Xueshen Wang
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry, Beijing Institute of Technology, Beijing, 100081, P.R. China.
| |
Collapse
|
3
|
Markwitz M, Labrzycki K, Azcune L, Landa A, Kuciński K. Access to thioethers from thiols and alcohols via homogeneous and heterogeneous catalysis. Sci Rep 2023; 13:20624. [PMID: 37996490 PMCID: PMC10667213 DOI: 10.1038/s41598-023-47938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023] Open
Abstract
A metal-free dehydrative thioetherification method has been reported, enabling the conversion of various alcohols and thiols into thioethers. By employing triflic acid as a catalyst or utilizing a recyclable NAFION® superacid catalyst, these methods significantly improve the efficiency and practicality of sulfide preparation.
Collapse
Affiliation(s)
- Martyna Markwitz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland
| | - Klaudiusz Labrzycki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland
| | - Laura Azcune
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Aitor Landa
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Krzysztof Kuciński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland.
| |
Collapse
|
4
|
Wu F, Wang Y, Qian Y, Xie ZB, Ke Z, Zhao Y, Liu Z. A Green Route to Benzyl Phenyl Sulfide from Thioanisole and Benzyl Alcohol over Dual Functional Ionic Liquids. Chem Asian J 2023; 18:e202201078. [PMID: 36445934 DOI: 10.1002/asia.202201078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Benzyl phenyl sulfide is a kind of important chemicals with wide usage, which is mainly prepared through a nucleophilic reaction of thiophenol with benzyl chlorides or benzyl alcohols, suffering from inherent drawbacks, such as low efficiency, requirements for equivalent acid or base catalysts and formation of harmful byproducts and waste. Herein, we report a green route to access various benzyl phenyl sulfide derivatives in good to excellent yields under mild conditions via the reaction of thioanisoles with benzyl alcohols over ionic liquid 1-propylsulfonate-3-methylimidazolium trifluoromethanesulfonate ([SO3 HPrMIm][OTf]). Mechanism investigation indicates that the synergic effect of cation and anion of [SO3 HPrMIm][OTf] activates thioanisoles and benzyl alcohols via hydrogen bonding, thus catalyzes the dehydration of benzyl alcohol to dibenzyl ether and the subsequent metathesis reaction between dibenzyl ether and benzyl phenyl sulfide, finally generating benzyl phenyl sulfide derivatives. This is a simple, highly efficient, and green approach to produce benzyl phenyl sulfide derivatives, which has promising application potentials.
Collapse
Affiliation(s)
- Fengtian Wu
- Province Key Laboratory of Synthetic Chemistry J, iangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology Economic Development Zone, Guanglan Avenue 418, 330013, Nanchang, P. R. China.,Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), North First Street 2, 100190, Beijing, P. R. China)
| | - Yuepeng Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), North First Street 2, 100190, Beijing, P. R. China)
| | - Yong Qian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), North First Street 2, 100190, Beijing, P. R. China)
| | - Zong-Bo Xie
- Province Key Laboratory of Synthetic Chemistry J, iangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology Economic Development Zone, Guanglan Avenue 418, 330013, Nanchang, P. R. China
| | - Zhengang Ke
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), North First Street 2, 100190, Beijing, P. R. China)
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), North First Street 2, 100190, Beijing, P. R. China)
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), North First Street 2, 100190, Beijing, P. R. China)
| |
Collapse
|
5
|
Xu B, Lin Y, Ye Y, Xu L, Xie T, Ye XY. Benzyl thioether formation merging copper catalysis. RSC Adv 2021; 12:692-697. [PMID: 35425124 PMCID: PMC8697992 DOI: 10.1039/d1ra08015f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
A novel copper-catalyzed thioetherification reaction has been developed to afford benzyl thioethers in moderate to excellent yields. Under the mild and easy-to-operate conditions, a variety of thioethers are efficiently prepared from readily available benzyl alcohols (primary, secondary, and tertiary) and thiols in the presence of Cu(OTf)2 as the Lewis acid catalysis. This C-S bond formation protocol furnishes exceptional chemoselectivity, and the preliminary mechanism studies show that the reaction should proceed through a Lewis-acid-mediated SN1-type nucleophilic attack of the carbocations formed in situ.
Collapse
Affiliation(s)
- Bing Xu
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Ying Lin
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Li Xu
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| |
Collapse
|
6
|
Stoffel JT, Riordan KT, Tsui EY. Accelerated reduction and solubilization of elemental sulfur by 1,2-aminothiols. Chem Commun (Camb) 2021; 57:12488-12491. [PMID: 34747957 DOI: 10.1039/d1cc05242j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nucleophilic 1,2-aminothiol compounds readily reduce typically-insoluble elemental sulfur to polysulfides in both water and nonpolar organic solvents. The resulting anionic polysulfide species are stabilized through hydrogen-bonding interactions with the proximal amine moieties. These interactions can facilitate sulfur transfer to alkenes.
Collapse
Affiliation(s)
- Jonathan T Stoffel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| | - Kimberly T Riordan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| | - Emily Y Tsui
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
7
|
Nishio T, Yoshioka S, Hasegawa K, Yahata K, Kanomata K, Akai S. Direct Nucleophilic Substitution of Alcohols Using an Immobilized Oxovanadium Catalyst. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tomoya Nishio
- Graduate School of Pharmaceutical Sciences Osaka University 1-6, Yamadaoka, Suita Osaka 565-0871 Japan
| | - Shin Yoshioka
- Graduate School of Pharmaceutical Sciences Osaka University 1-6, Yamadaoka, Suita Osaka 565-0871 Japan
| | - Kai Hasegawa
- Graduate School of Pharmaceutical Sciences Osaka University 1-6, Yamadaoka, Suita Osaka 565-0871 Japan
| | - Kenzo Yahata
- Graduate School of Pharmaceutical Sciences Osaka University 1-6, Yamadaoka, Suita Osaka 565-0871 Japan
- Current address: Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Kyohei Kanomata
- Graduate School of Pharmaceutical Sciences Osaka University 1-6, Yamadaoka, Suita Osaka 565-0871 Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences Osaka University 1-6, Yamadaoka, Suita Osaka 565-0871 Japan
| |
Collapse
|
8
|
Molybdenum (VI)-catalyzed dehydrative construction of C O and C S bonds formation via etherification and thioetherification of alcohols and thiols. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Singh A, Gupta S, Khurana JM. Zinc Chloride Mediated Nucleophilic Substitution: Amination and Thioetherification of Alcohols at Room Temperature. ORG PREP PROCED INT 2020. [DOI: 10.1080/00304948.2020.1716617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ashima Singh
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Shruti Gupta
- Department of Chemistry, University of Delhi, New Delhi, India
| | | |
Collapse
|
10
|
Sorribes I, Corma A. Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H 2S with alcohols. Chem Sci 2019; 10:3130-3142. [PMID: 30996896 PMCID: PMC6429612 DOI: 10.1039/c8sc05782f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/20/2019] [Indexed: 12/23/2022] Open
Abstract
Nanolayered cobalt-molybdenum sulphide (Co-Mo-S) materials have been established as excellent catalysts for C-S bond construction. These catalysts allow for the preparation of a broad range of thioethers in good to excellent yields from structurally diverse thiols and readily available primary as well as secondary alcohols. Chemoselectivity in the presence of sensitive groups such as double bonds, nitriles, carboxylic esters and halogens has been demonstrated. It is also shown that the reaction takes place through a hydrogen-autotransfer (borrowing hydrogen) mechanism that involves Co-Mo-S-mediated dehydrogenation and hydrogenation reactions. A novel catalytic protocol based on the thioetherification of alcohols with hydrogen sulphide (H2S) to furnish symmetrical thioethers has also been developed using these earth-abundant metal-based sulphide catalysts.
Collapse
Affiliation(s)
- Iván Sorribes
- Instituto de Tecnología Química , Universitat Politecnica de València-Consejo Superior de Investigaciones Científicas , Avenida Los Naranjos s/n , 46022 Valencia , Spain .
| | - Avelino Corma
- Instituto de Tecnología Química , Universitat Politecnica de València-Consejo Superior de Investigaciones Científicas , Avenida Los Naranjos s/n , 46022 Valencia , Spain .
| |
Collapse
|
11
|
Shi ZF, Xu LN, Chen J, Luo HX, Zhang J, Cao XP. Access to Sulfides through Free Radical Reaction of Vinyl Halides with Thiols. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201800575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zi-Fa Shi
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; 222 Tianshui Road Lanzhou 730000 China
| | - Li-Ning Xu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; 222 Tianshui Road Lanzhou 730000 China
| | - Jie Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; 222 Tianshui Road Lanzhou 730000 China
| | - Hui-Xing Luo
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; 222 Tianshui Road Lanzhou 730000 China
| | - Juntao Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; 222 Tianshui Road Lanzhou 730000 China
| | - Xiao-Ping Cao
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; 222 Tianshui Road Lanzhou 730000 China
| |
Collapse
|
12
|
Kuciński K, Hreczycho G. S-Acetylation of Thiols Mediated by Triflic Acid: A Novel Route to Thioesters. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.7b00378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Krzysztof Kuciński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Grzegorz Hreczycho
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, ul. Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
13
|
Kaźmierczak J, Kuciński K, Stachowiak H, Hreczycho G. Introduction of Boron Functionalities into Silsesquioxanes: Novel Independent Methodologies. Chemistry 2018; 24:2509-2514. [PMID: 29315930 DOI: 10.1002/chem.201705898] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 11/06/2022]
Abstract
Owing to their versatile application possibilities, silsesquioxanes (SQs) are of considerable interest for creating hybrid inorganic-organic materials. In this report, two novel and independent strategies for the direct attachment of boron functionalities to silsesquioxanes are presented. Encouraged by our previous work concerning the synthesis of borasiloxanes through the catalyst-free dehydrogenative coupling of silanols and boranes, we decided to apply our method to a synthesis of various boron-functionalized silsesquioxanes. During our tests, we also investigated the activity of scandium(III) triflate, which we have previously used as an excellent catalyst for the obtaining of Si-O-Si and Si-O-Ge moieties. As a result, we also discovered a novel approach for the O-borylation of Si-OH groups in silsesquioxanes with allylborane. Both routes are highly chemoselective and efficiently lead to the obtaining of Si-O-B moiety under air atmosphere and at room temperature.
Collapse
Affiliation(s)
- Joanna Kaźmierczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614, Poznań, Poland
| | - Krzysztof Kuciński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614, Poznań, Poland
| | - Hanna Stachowiak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614, Poznań, Poland
| | - Grzegorz Hreczycho
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614, Poznań, Poland
| |
Collapse
|